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For mitigating climate change through carbon sequestration and for reporting, Viet Nam needs to develop
biomass equations at a national scale. These equations need to be accurate and provide quantifiable
uncertainty. Using data from 968 trees across five ecoregions of Viet Nam, we developed a set of models
to estimate tree aboveground biomass (AGB) in evergreen broadleaf forests (EBLF) at the national level.
Diameter at breast height (DBH), tree height (H), wood density (WD), and combination of these three tree
characteristics were used as covariates of the biomass models. Effect of ecoregion, wood density, plant
family on AGB were examined. Best models were selected based on AIC, Adjusted R?, and visual interpre-
tation of model diagnostics. Cross-validation statistics of percent bias, root mean square percentage error
(RMSPE), and mean absolute percent error (MAPE) were computed by randomly splitting data 200 times
into model development (80%) and validation (20%) datasets and averaging over the 200 realizations.
Effects models were used, the best results were obtained by using a combined variable (DBH*HWD
(kg) = (DBH (cm)/100)? x H (m) x WD (g/cm?) x 1000) model AGB = a x (DBH?’HWD)". Including a cate-
gorical WD variable as a random effect reduced AIC, percent bias, RMSPE, MAPE of models
AGB=a x DBH” and AGB=a x (DBH?H)’; ecoregion as a random effect reduced the AIC of models
AGB = DBH" x WD, AGB = a x (DBH?H)”, and AGB = a x (DBH*HWD)". For models that did not include WD
variable, including plant family as a random effect reduced AIC, RMSE, and MAPE; recommendations
are provided for models with specific parameters for main families and without WD if this variable is
not available. The overall best model for estimating AGB was the equation form AGB = a x (DBH*HWD)?
with ecoregion as a random effect.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

there is still a need in Viet Nam for national scale models that
can provide accurate estimates of biomass and carbon, and pro-

The management of forest ecosystems to mitigate climate
change through CO, absorption deserves urgent attention from
governments. The United Nations’ Programme on Reducing Emis-
sions from Deforestation and Forest Degradation (UN-REDD) has
been taking actions to help support this need in developing coun-
tries and Viet Nam since 2009. The Intergovernmental Panel on Cli-
mate Change (IPCC) has also provided guidelines for measuring
and monitoring forest carbon (IPCC, 1996, 2003, 2006). However,

* Corresponding author.
E-mail addresses: baohuy.frem@gmail.com, bao.huy@oregonstate.edu (B. Huy),
hailemariam.temesgen@oregonstate.edu (H. Temesgen).

http://dx.doi.org/10.1016/j.foreco.2016.10.021
0378-1127/© 2016 Elsevier B.V. All rights reserved.

duce accurate emission factors.

Due to the diverse nature of tropical forests, the development of
species-specific equations is not realistic and researchers have
instead commonly focused on generic multi-species models (e.g.
Brown et al, 1989; Brown and Iverson, 1992; Brown, 1997;
Brown et al., 2001; Ketterings et al., 2001; Basuki et al., 2009;
Chave et al., 2005, 2014). However, available models typically do
not incorporate the distinction of forest type or ecoregion, nor have
they been evaluated for their reliability in evergreen broadleaf
forests (EBLF) of Viet Nam, the primary cover type of the
country’s natural forest spanning 14.2 million hectares (JICA
and VNFOREST, 2012). These generic models provide valuable
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information for the tropics but may be biased in cases where a
particular ecosystem, such as EBLF, was not represented in the
development of such models (Jara et al., 2015). Therefore,
developing models for comprehensive biomass estimation that
consider differences in forest type or ecoregion is necessary
(Temesgen et al., 2015).

Few allometric equations were developed in Viet Nam prior to
the implementation of the UN-REDD programme (UN-REDD,
2011). However, as part of the country’s effort to engage and pre-
pare for the UN-REDD programme, biomass equations are now
being explored. Allometric equations for converting national forest
inventory data to biomass and forest carbon stock estimates have
been proposed for the main forest types and ecological regions of
Viet Nam (Sola et al., 2014a,b; Huy et al., 2013; Huy, 2014; Huy
et al., 2016a,b). This study improves and updates national scale
allometric equations for estimating AGB in EBLF of Viet Nam by
including additional data collected by Huy et al. (2013) from the
Central Highlands ecoregion and by improving the methods used
to estimate model parameters. We further analyzed this data to
increase the reliability of biomass estimates for different forest
conditions in Viet Nam by considering the effect of ecoregion, plant
family, and wood density (WD) on AGB, and evaluating the reliabil-
ity and accuracy of the selected models examined in this study.

2. Methodology
2.1. Study sites

Five of Viet Nam’s eight agro-ecological zones, or ecoregions,
contain most of the country’s forest cover: the central highlands
(CH), north central coastal (NCC), northeast (NE), south central
coastal (SCC), and southeast (SE). Therefore, this study focused
on estimating biomass of EBLF in the five representative ecoregions
of Viet Nam (Fig. 1). These ecoregions span a range of ecological,
climatic, and structural site characteristics (Table 1).

Elevation of EBLF in these ecoregions ranges from 197 to
1068 m with up to 40° slopes in some areas. Mean annual rainfall
is between 1055 and 2500 mm with the dry seasons lasting 3 and
5 months and mean annual temperature ranging from 16.9 to
25.0 °C. The EBLF in Viet Nam is distributed primarily on a soil type
of sedimentary rock, crystalline schist, igneous rock, or some com-
bination thereof. Stand density can range from 370 to 3300 trees
per ha (DBH > 5 cm) and BA can range from 9.2 to 48.9 m? per ha
(This study; Hijmans et al., 2005; Fischer et al., 2008).

2.2. Sampling design and data collection

Most of the data used in this study was collected with the sup-
port of Vietnam UN-REDD Phase I Programme (Phuong et al.,
2012b). Additional data for the Central Highlands ecoregion was
collected with support from the Ministry of Education and Training
(Huy et al.,, 2013).

A total of 14 1-ha (100 x 100 m) sample plots were established
across the five ecoregions. A total of 26 0.2-ha (20 x 100 m) were
added for the Central Highlands where EBLF mainly covers in the
country. Within a plot, species and diameter at breast height
(DBH) was recorded for all trees greater than 5 cm in DBH. Sample
trees were selected from each plot and destructively sampled for
AGB measurements. Sample tree selection focused on the main
species. A total of 968 trees were destructively sampled with the
DBH of sampled trees ranging from 4.7 to 87.7 cm and with heights
(H) of 3.9-41.4 m. Table 2 shows the number of trees sampled by
ecoregion and main plant family.

Fresh biomass of stems, branches, and new and old leaves were
measured in the field. Samples from stem, branches, and new and

old leaves were taken to obtain the fresh-to-dry mass ratio of each
tree component and to calculate the total AGB. Dry weight of wood
samples was obtained by drying them in ovens until a constant
weight was reached. WD was then calculated as the ratio of dry
mass to the volume of wood samples taken from every one-
fourth or one-fifth of stem length (Phuong et al., 2012a). Fig. 2
shows AGB against DBH of all destructively sampled trees by ecore-
gion and main plant family. Table 3 shows a summary for each of
the predictors and the response variables of the destructive sample
trees.

2.3. Model development

Commonly used covariates for estimating AGB models are DBH,
WD, and H. These easily measurable dendrometric variables have
been related to AGB through a variety of model forms such as
power, logarithmic, and exponential functions (Brown, 1997;
Ketterings et al., 2001; Jenkins et al., 2003, 2004; IPCC, 2003;
Basuki et al., 2009; Dietz and Kuyah, 2011; Johannes and Shem,
2011; Chave et al., 2005, 2014; Henry et al.,, 2010, 2015; Huy
et al., 2016a,b). The power models are very common and are fitted
either as linear models after logarithmic transformation or as non-
linear models (Brown, 1997; Chave et al., 2014; Basuki et al., 2009).
As biomass models are generally heteroscedastic, the logarithmic
transformation can help meet the assumption of error variance
homogeneity, but it can also introduce transformation bias. On
the other hand, the use of non-linear models allows for flexibility
in model forms and can account for heterogeneity of errors
(Davidian and Giltinan, 1995).

Large scale biomass estimation requires generic models that
account for the variability in biomass due to geographic locations.
However, traditionally developed fixed effects models do not take
into consideration the grouping of the data by locations. Mixed
effect models are appropriate when data are grouped and have
errors that are correlated and/or have unequal variances (Bates,
2010; Pinheiro et al., 2014). Our national scale biomass dataset
has a location grouping variable of ecoregion. Therefore we used
weighted non-linear mixed effects models to develop national
scale biomass equations. The models were fit based on the maxi-
mum likelihood procedure in R statistical software using the nlme
package (Picard et al., 2012; Pinheiro et al., 2014) and model diag-
nostics were conducted using the ggplot2 package (Wickham and
Chang, 2013). The general form of the AGB model was:

Vi = (o + @) x X+ g (1)
& ~ iid (0, 62) 2)
a; ~ iid N'(0, 02) 3)
b; ~ iid N (0, 6%) (4)

where Yj; is the ABG (kg) for the jth tree from the ith class of a vari-
able; o and p are the fixed effect parameters of the model; a; and b;
are parameters associated with ith class of a variable; X; is the
covariate DBH (cm), H (m), WD (g/cm?), DBH?H (m?), or DBH?HWD
(kg) for the jth tree in ith class of a variable; and ¢; is the random
error associated with the jth tree from the ith class of a variables.
The independent combination variables DBH*H and DBH*HWD are
approximations of volume and AGB, respectively, and were calcu-
lated as follows:

2., (DBH\’
DBH’H = (—]00 x H (5)
DBH?HWD = DBH*H x WD x 1000 (6)
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Fig. 1. Ecoregions in Viet Nam and sample plot locations (black, Huy et al., 2013; green, Phuong et al., 2012b). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 1
Ecoregion characteristics for EBLF of sample plots including elevation (m

), slope (degrees), mean annual rainfall (Rain mm), dry season length (Dry, months), mean annual

temperature (Temp, °C), soil type, stand density (trees per ha with DBH > 5 cm), and basal area (BA; m? per ha with DBH > 5 cm).

Ecoregion Elevation Slope Rain Dry Temp Soil Density BA

CH 377-1068 0-36 2100-2500 3 22.2-25.0 S 370-3300 9.2-48.9
NCC 197-430 0-28 1418-2262 3 21.9-24.8 S, C 476-1312 10.1-39.7
NE 580-750 28-32 1678-1908 5 16.9-21.0 C1 418-999 17.8-25.5
scc 574-624 10-40 2252 3 235 C 1076-1267 34.5-48.3
SE 320-340 15 1055-1068 5 24.2-24.5 S 791-924 37.8-48.3

Note: For Ecoregion, CH: Central Highland; NCC: North Central Coastal; NE: North East; SCC: South Central Coastal; SE: South East. For Soil type, S: Sedimentary rock, C:
Crystalline schist, and I: Igneous rock. (This study; Hijmans et al., 2005; Fischer et al., 2008).

Preliminary analysis indicated that the variance of residuals
tended to increase with increasing diameters in all AGB models.
Therefore the covariance structure of the residuals was modeled
with a power variance function to account for heteroscedasticity
and improve parameter estimation. The variance function was
defined as:
Var(g;) = 2 (vy)** (7)
where ¢; is as defined before; 2 is the residual sum of squares; vj; is
the weighting variable (DBH, DBH?*H or DBH?HWD in this study)

associated with the jth tree from the ith class of the random effect;
and k is the variance function coefficient.

While random effects of other ecological, climatic, taxonomic,
and stand characteristic factors were examined, many variables
that could be used as surrogates for ecoregion, plant family, or
WD have limited used or have difficulty in using or applying them.
For example, dry season length, mean annual temperature, or
mean annual precipitation are temporally and maybe effected by
climate change and lead to mixed effects models that could be
unreliable into the future. Some factors such as data on soil type
can be difficult or costly to obtain, making their inclusion in mod-
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Table 2

Number of trees destructively sampled from the five ecoregions and the nine main plant family groups.
Plant family Ecoregion Total

CH NCC NE Nee SE

Dipterocarpaceae 3 29 19 7 27 85
Euphorbiaceae 10 32 15 4 61
Fagaceae 29 25 24 7 85
Lauraceae 21 25 30 3 79
Leguminosae 1 34 19 19 73
Meliaceae 12 6 6 6 30
Myrtaceae 27 11 7 8 4 57
Ulmaceae 5 15 8 4 32
Others 114 134 87 71 60 466
Total 222 311 215 110 110 968

Note: CH: Central Highland; NCC: North Central Coastal; NE: North East; SCC: South Central Coastal; SE: South East.

els impractical for applied uses. Ecoregion is a useful grouping vari- . 100 G-I [y, — Vi

able as it incorporates many ecological and climatic factors that Percent Bias = R Z Ty 1y (8)

r=1 i=1 n

likely affect AGB. Plant family and WD are also variables that are
closely tied to AGB and are more easily obtained. Therefore, only
ecoregion, plant family, and WD class were examined as potential
random effects that may influence the allometric relationship
between dendrometric variables and AGB.

Random effects of ecoregion, plant family, and WD on model
parameters were tested to evaluate their influence in the
allometric relationship. Ecoregion at five levels (NE, NCC, CH,
SCC, SE) represented the influence of ecological and climatic
factors on AGB. Nine main plant family groups were identified
from the sample trees (Dipterocarpaceae, Euphorbiaceae,
Fagaceae, Lauraceae, Leguminosae, Meliaceae, Myrtaceae,
Ulmaceae, and other). Main plant family also represented an
ecological influence on AGB and each level of plant family had
at least 30 sample trees. While WD was used as a potential
covariate to the AGB models, the effect of WD class was also
examined for equations not explicitly incorporating WD as a
fixed effect. Three WD classes were formed (<0.40; 0.41-0.60;
>0.60) and represented a combination of ecological, climatic,
and stand characteristic influences on AGB.

2.4. Model selection and validation

Modeling AGB with DBH and H as f{(DBH, H), for example, as
opposed to f{DBH?H) could increase model flexibility by allowing
exponents on the covariates of DBH and H to vary; however doing
so increases the number of parameters that need to be estimated.
Therefore, for each combination of covariates (DBH; DBH and H;
DBH and WD; DBH, H, and WD), fixed effect models were fit and
the best model forms selected. The model forms were then evalu-
ated based on diagnostic plots, AIC, Adjusted R?, and the signifi-
cance of parameters. If models had similar values for AIC, the
selection among models was made based on the principle of model
parsimony. After the best fixed effects model forms were selected
for each combination of covariates, new mixed effects models
incorporating the random effect of ecoregion, plant family, and
WD class were examined.

The dataset of 968 sample trees was randomly split into model
development (80%; 775 trees) and validation (20%; 193 trees) data
and the process was repeated 200 times. Validation statistics were
calculated for all selected fixed effects models and mixed effect
models in this study. Models were compared in terms of percent
bias, root mean square percentage error (RMSPE), and mean abso-
lute percent error (MAPE) (Swanson et al., 2011). Validation statis-
tics were computed for each realization of randomly selected data
and then averaged over the 200 realizations (Temesgen et al.,
2014).

R NP
RMSPE:@Z S <M> n, 9)
R =1 i=1 yri

R nr TN
MAPE — %Z Py”yiy"q / n, (10)
n

r=1 i=1

where R is the number of realizations (200); n, is the number of
trees per realization r; and y,; and j,; are the observed and predicted
AGB (kg) for the ith tree in realization r, respectively. After validat-
ing each model, final estimates of model parameters and their stan-
dard errors are provided using the entire dataset.

3. Results
3.1. Model AGB = f(DBH)

A power model of the form AGB = a x DBH was used to develop
a model with DBH as the only covariate. Random effects were
tested on the power model and compared to the fixed effect model.
Fit statistics and validation statistics for the resulting mixed
effects, fixed effect, and selected models are shown in Table 4.

Compared to the fixed effect model, including WD as a random
effect resulted in the greatest increase in adjusted R? and the great-
est reduction of AIC, percent bias, RMSPE, and MAPE. While adding
plant family as a random effect also improved all fit and validation
statistics, there was not a substantial difference between parame-
ter estimates for the mixed and fixed models (Table 5). Compared
to the fixed effect model that used DBH as the only covariate
(Table 5), ecoregion as a random effect did not improve fit statistics
and did not substantially change parameter estimates.

The mixed effects model incorporating WD class as a random
effect was selected as the best mixed model for the DBH only
model form, as including WD class resulted in substantial changes
in model parameters once the models were fit with the entire data-
set. Therefore, AGB in EBLF of Viet Nam can be calculated with or
without the random effect of WD using the equations and param-
eter estimates provided in Table 5. Final plots of DBH against AGB
for fitted and predicted curves with WD class as a random effect
are displayed in Fig. 3.

3.2. Model AGB = f(DBH, H)

For the power model incorporating DBH and H as covariates, the
model forms AGB=a x DBH’H® and AGB-=a x (DBH?H)” were
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Fig. 2. Scatter diagrams of AGB vs. DBH of all destructively sampled trees by (a) ecoregion and (b) main plant family.

Table 3

Summary for each of the predictors and the response variables of the destructively sampled trees (n = 968).
Summary DBH (cm) H (m) WD (g/cm?) AGB (kg)
Min 4.7 3.9 0.165 29
Average 25.0 17.4 0.547 553.7
Max 87.7 41.4 0.964 8633.0
Standard deviation 17.2 7.2 0.139 917.5
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Table 4
Comparison and validation of different AGB = f{DBH) models with and without random effects.
Model form Random effect Weight variable AIC Adj. R? RMSPE Percent bias MAPE
AGB = a x DBH® None* 1/DBH* 8425 0.886 421 -12.2 30.6
Ecoregion 8433 0.885 413 -11.8 30.1
WD class*® 8292 0.923 31.7 —-4.9 23.0
Family 8395 0.894 40.8 -11.4 29.6

@ Selected model.

Table 5

Final parameter estimates, standard errors, and sample size obtained using the entire dataset for fixed and mixed effects models of the form AGB = a x DBH".

Random effect Class Parameters estimates Standard error Number of sample trees
a b a b
None - 0.128430 2.409074 0.005878 0.014967 968
Ecoregion Central Highlands 0.128430 2.409076 0.005878 0.014967 222
North Central Coastal 0.128430 2.409076 0.005878 0.014967 311
Northeast 0.128430 2.409076 0.005878 0.014967 215
South Central Coastal 0.128430 2.409076 0.005878 0.014967 110
Southeast 0.128430 2.409076 0.005878 0.014967 110
Wood density <0.40 g/cm® 0.106964 2.367518 0.001643 0.001580 151
0.41-0.60 g/cm® 0.127542 2.387309 0.000901 0.000867 502
>0.60 g/cm® 0.156034 2414712 0.001138 0.001094 315
Plant family Dipterocarpaceae 0.128430 2.409076 0.005878 0.014967 85
Euphorbiaceae 0.128430 2.409076 0.005878 0.014967 61
Fagaceae 0.128430 2.409076 0.005878 0.014967 85
Lauraceae 0.128430 2.409076 0.005878 0.014967 79
Leguminosae 0.128430 2.409076 0.005878 0.014967 73
Meliaceae 0.128430 2.409076 0.005878 0.014967 30
Myrtaceae 0.128430 2.409076 0.005878 0.014967 57
Ulmaceae 0.128430 2.409076 0.005878 0.014967 32
Others 0.128430 2.409076 0.005878 0.014967 466
a a
L ]
6000 7 7500 - /
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L 4
D 4000 ~ —— WD1 5000 ’ —— WD1
o £
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»
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Fig. 3. Model AGB = a x DBH” with random effect of WD class. The left is fitted values vs. the entire dataset for developing equations and the right is predicted values vs. one of

the validation datasets.

DBH (cm)

DBH (cm)

Table 6
Comparison and validation of different AGB = f{lDBH, H) models with and without random effects.
Model form Random effect Weight variable AIC Adj. R? RMSPE Percent bias MAPE
AGB = a x (DBH?H)" None* 1/DBH¥ 8342 0.896 36.6 -8.6 274
AGB = a x DBH" x H¢ None 1/DBH* 8344 0.897 37.8 -10.6 28.0
AGB = a x (DBH?H)" Ecoregion® 1/(DBH?H)¢ 8311 0.903 37.6 -104 274
WD class® 8122 0.935 30.8 -74 223
Family® 8245 0.923 349 -9.0 254

¢ Selected model.
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examined. Better fit and validation statistics were achieved with
the model form AGB=a x (DBH?H)" (Table 6). Therefore, mixed
effects models were fit with DBH?H as the covariate. Fit and valida-
tion statistics for these models are shown in Table 6.

The random effect of WD resulted in the greatest improve-
ment in fit and validation statistics between the mixed effects
models. Plant family also resulted in substantial improvements
in all fit statistics over the fixed effect model. While including
ecoregion did not result in the same magnitude of reductions
in RMSPE, percent bias, and MAPE as the random effect of
plant family, it improved AIC in comparison to the fixed effect
model.

All of the mixed effects models examined resulted in substantial
changes in parameter estimates when compared to the fixed effect
model. The parameter estimates and standard errors of the
selected fixed effect and mixed effects models with random effects
of ecoregion, WD class, and plant family are provided in Table 7.
The fitted values vs. the entire dataset for developing equations
and the predicted values vs. a validation dataset are shown in
Fig. 4. Fig. 4 indicates that there are sizable differences in AGB esti-
mates when WD class and family are included as random effects.
Marginal differences were observed when ecoregion was included
as a random effect.

3.3. Model AGB = f(DBH, WD)

The power models incorporating DBH and WD as covariates
tested in this study were of the form AGB=a x DBH’WD and
AGB =a x DBH?WDF. These models had very similar values for
AIC and comparable fit statistics (Table 8). Therefore, the model
AGB=a x DBH” x WD was selected as it had fewer parameters.
As shown in Table 8, the random effect of ecoregion increased
the accuracy of the AGB estimates over the fixed effects model,
lowering AIC, RMSPE, and MAPE while increasing the adjusted
R2. Including plant family as a random effect also lowered AIC
compared to the fixed effects model. However once models
were fit using the entire data set, the mixed effects model with
ecoregion as a random effect resulted in more substantial
changes to parameter estimates over the fixed effects model
than plant family (Table 9). Fig. 5 shows fitted and predicted
curves of the mixed model with random effect of ecoregion
overlaid on plots of the entire dataset and a validation dataset,
respectively.

Table 7

3.4. Model AGB = f(DBH, H, WD)

For predicting AGB with DBH, H, and WD the fixed effects model
forms AGB=a x (DBH?’HWD)® and AGB=a x DBH’H'WD? were
examined. Although the model AGB=a x DBH?H'WD? preformed
slightly better with respect to fit statistics (AIC and Adj. R?)
(Table 10), the DBH*HWD model preformed comparably well and
has fewer parameters. Therefore, mixed effects models were fit
based on the AGB = a x (DBH*HWD)® model form.

Including the random effect of ecoregion resulted in an
increased adjusted R? and reduced AIC and MAPE compared to
the fixed effect model of the same form (Table 10). While plant
family highered AIC, it resulted in increases in RMSPE, percent bias,
and MAPE, and had similar adjusted R? as the fixed effect model.
However, both random effects resulted in substantial changes to
parameter estimates when compared to the fixed effect model
(Table 11). The changes of its parameters under the effect of ecore-
gion are demonstrated in Table 11 and Fig. 5.

Fig. 6 shows the weighted fitted values and maximum likeli-
hood weighted residuals for from one to three covariates. Fig. 7
shows the percent bias distribution across the 200 realizations of
validation datasets and AGB predicted values for one of those val-
idation datasets.

4. Discussion

In EBLF tree height generally indicates site productivity
(Vanclay, 1992), microsite influences the relationships between
height and diameter, and consequently the AGB estimate; but this
fact is generally ignored. Additionally, the WD variable has the
potential to be representative of different species. Most pan tropic
equations to estimate AGB such as Brown (1997), IPCC (2003) and
Basuki et al. (2009) use only DBH as a covariate.

For fixed effects models, we found that the DBH only model had
the lowest accuracy compared with fixed effects models where H
or WD were also considered as covariates. Adding H or WD to the
DBH based model decreased MAPE by 3.2% or 9.1%, respectively,
and when both H and WD were added to the DBH based model,
there was an 11% decrease in MAPE. However, we also found that
the AIC of the fixed models was substantially reduced when WD
covariate was included in the model instead of H (Table 12), indi-
cating that WD may be more important than H for reducing uncer-
tainty in AGB estimates.

Final parameter estimates, standard errors, and sample size obtained using the entire dataset for fixed and mixed effects models of the form AGB = a x (DBH?H)".

Random effect Class Parameters estimates Standard error Number of sample trees
a b a b

None - 263.9977 0.93645 2.778249 0.005567 968

Ecoregion Central Highlands 304.1668 0.95102 1.583351 0.005603 222
North Central Coastal 253.2449 0.95102 1.337745 0.005603 311
Northeast 256.7133 0.95102 1.608920 0.005603 215
South Central Coastal 272.0797 0.95102 2.249351 0.005603 110
Southeast 236.5860 0.95102 2.249351 0.005603 110

Wood density <0.40 g/cm? 198.2493 0.93333 3.393656 0.004659 151
0.41-0.60 g/cm? 247.2759 0.93333 2.867241 0.004659 502
>0.60 g/cm® 320.8111 0.93333 3.448459 0.004659 315

Plant family Dipterocarpaceae 313.3334 0.93293 4.497709 0.005167 85
Euphorbiaceae 199.6983 0.93293 5.309283 0.005167 61
Fagaceae 315.0759 0.93293 4.497709 0.005167 85
Lauraceae 249.1764 0.93293 4.665383 0.005167 79
Leguminosae 259.1900 0.93293 4.853325 0.005167 73
Meliaceae 265.4258 0.93293 7.570772 0.005167 30
Myrtaceae 321.5197 0.93293 5.492415 0.005167 57
Ulmaceae 221.1848 0.93293 7.330369 0.005167 32
Others 252.2186 0.93293 1.920914 0.005167 466
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Table 8
Comparison and validation of different AGB = f{lDBH, WD) models with and without random effects.
Model form Random effect Weight variable AIC Adj. R? RMSPE Percent bias MAPE
AGB = a x DBH" x WD None® 1/DBH* 8122 0.923 30.0 —4.5 214
AGB = a x DBH® x WD° None 8094 0.926 313 -72 22.3
AGB =a x DBH” x WD Ecoregion® 8087 0.927 29.9 -4.8 21.0
Family 8106 0.922 30.3 -4.6 215

¢ Selected model.
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Table 9
Final parameter estimates, standard errors, and sample size obtained using the entire dataset for fixed and mixed effects models of the form AGB = a x DBH® x WD.
Random effect Class Parameters estimates Standard error Number of sample trees
a b a b
None - 0.248329 2.386024 0.008997 0.011856 968
Ecoregion Central Highlands 0.229594 2.461256 0.008331 0.001722 222
North Central Coastal 0.229594 2.401649 0.008331 0.001455 311
Northeast 0.229594 2.400294 0.008331 0.001750 215
South Central Coastal 0.229594 2.409581 0.008331 0.002446 110
Southeast 0.229594 2.391410 0.008331 0.002446 110
Plant family Dipterocarpaceae 0.248326 2.386030 0.008997 0.011856 85
Euphorbiaceae 0.248326 2.386030 0.008997 0.011856 61
Fagaceae 0.248326 2.386030 0.008997 0.011856 85
Lauraceae 0.248326 2.386030 0.008997 0.011856 79
Leguminosae 0.248326 2.386030 0.008997 0.011856 73
Meliaceae 0.248326 2.386030 0.008997 0.011856 30
Myrtaceae 0.248326 2.386030 0.008997 0.011856 57
Ulmaceae 0.248326 2.386030 0.008997 0.011856 32
Others 0.248326 2.386030 0.008997 0.011856 466
a a
+ +
+
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Fig. 5. Models with random effect of ecoregion, (a) Model AGB = a x DBH” x WD and (b) Model AGB = a x (DBH?HWD)P. Left column plots are of fitted values vs. the entire
dataset for developing equations and right column plots are of predicted values vs. one of the validation datasets.

In the absence of random effects, increasing the number of
covariates from one (DBH) to three (DBH, H and WD) reduced
the AIC and MAPE of the estimates (Table 12). As a result of this
and ecological knowledge of EBLF, the best option for estimating

AGB was to use three covariates, DBH, H, and WD with the
AGB = a x (DBH*HWD)" model form. However, we also need to
recognize as a practical matter that the costs and errors of
measurement may increase if more variables are used. Therefore,
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Table 10
Comparison and validation of different AGB = f{lDBH, H, WD) models with and without random effects.
Model form Random effect Weight variable AIC Adj. R? RMSPE Percent bias MAPE
AGB = a x (DBH*HWD)? None® 1/DBH* 8046 0.935 26.7 -2.1 19.6
AGB = a x DBH? x H® x WD None 1/DBH* 7984 0.937 27.5 —-6.1 20.0
AGB = a x (DBH*HWD)? Ecoregion® 1/(DBH*HWD) 7987 0.943 28.0 -59 19.5
Family 8177 0.934 28.8 -7.5 213

¢ Selected model.

Table 11
Final parameter estimates, standard errors, and sample size obtained using the entire dataset for fixed and mixed effects models of the form AGB = a x (DBH?HWD)".
Random effect Class Parameters estimates Standard error Number of sample trees
a b a b
None - 0.806438 0.920321 0.024255 0.004930 968
Ecoregion Central Highlands 0.798788 0.965553 0.003522 0.000806 222
North Central Coastal 0.680529 0.938471 0.002975 0.000681 311
Northeast 0.680064 0.938364 0.003578 0.000819 215
South Central Coastal 0.685211 0.939543 0.005003 0.001145 110
Southeast 0.647261 0.930852 0.005003 0.001145 110
Plant family Dipterocarpaceae 0.809935 0.919647 0.007371 0.000085 85
Euphorbiaceae 0.775496 0.920044 0.008701 0.000100 61
Fagaceae 0.964170 0.917868 0.007371 0.000085 85
Lauraceae 0.814778 0.919591 0.007646 0.000088 79
Leguminosae 0.786264 0.919920 0.007954 0.000092 73
Meliaceae 0.845066 0.919242 0.012407 0.000143 30
Myrtaceae 0.904027 0.918562 0.009001 0.000103 57
Ulmaceae 0.776853 0.920028 0.012013 0.000139 32
Others 0.777449 0.920022 0.003148 0.000036 466
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Fig. 6. Plots of AGB models without random effects: Weighted Fitted and Maximum Likelihood weighted residuals. (a) For model of AGB=a x DBH?, (b) for model of
AGB = a x (DBH?H)’, (c) for model AGB = a x DBH® x WD, and (d) for model of AGB = a x (DBH*HWD)".

the context of using equations with different sets of predictors is were obtained with the random effect of WD classes. When WD

very important. variable was included with other fixed effect covariates, such as
For mixed effects models where WD was not included as a AGB=a x DBH? x WD or AGB=a x (DBH*HWD)®, then ecoregion

covariate (e.g. AGB =f(DBH) or AGB=f(DBH, H)), the best results as a random effect helped reduce uncertainty of estimates.
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Fig. 7. Percent bias distribution from over 200 realizations of the validation dataset (left) and predicted AGB values from selected equations without random effects vs. one of

the validation dataset realizations (right).

The highest preforming model in this study used a combination
of the three variables (DBH*HWD) and the random effect of ecore-
gion. This model had a low AIC and with 19.5 MAPE. This result is
consistent with findings in a study by Ketterings et al. (2001) from
Sumatra where site-specific power biomass models were found to
outperform generic power models without a site specification.
Therefore ecoregion should be recognized as an important factor

in estimating AGB and improving the accuracy of the biomass esti-
mate for pan tropic forest that have varied microsites conditions.

While most AGB equations for the pan tropic region only use
dendrometric variables (DBH, H, WD) as covariates, this study
shows that AGB is also influenced by ecoregion and taxonomic fac-
tors (plant family). These factors when included as random effects
increased the accuracy of the biomass estimates for EBLF of Viet
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Table 12

Comparison and validation of the best models with and without random effects for each combination of input variables.
Model form Random effect Weight variable AIC MAPE
AGB = a x DBH® None 1/DBH* 8425 30.6
AGB = a x (DBH?H)" None 1/DBH* 8342 274
AGB =a x DBH® x WD None 1/DBH* 8122 21.5
AGB = a x (DBH*HWD)" None 1/DBH* 8046 19.6
AGB =a x DBH® WD class 1/DBH* 8292 23.0
AGB =a x (DBH*H)" Ecoregion 1/(DBH?H)¥ 8311 274
AGB = a x (DBH?H)" Family 1/(DBH?H) 8245 25.4
AGB = a x (DBH?H)" WD class 1/(DBH?H)* 8122 223
AGB =a x DBHP x WD Ecoregion 1/DBH¥ 8087 21.0
AGB = a x (DBH*HWD)" Ecoregion 1/(DBH?HWD)¥ 7987 19.5

Nam over fixed effects models. The mixed effects modeling Acknowledgements

approach used in this study helped determine the influence of fac-
tors such ecology, environment, and plant on biomass estimates.

5. Conclusions

Overall, this study found AGB = a x (DBH*HWD)? with ecoregion
as a random effect to be the best model for estimating AGB of EBLF
in Viet Nam. The development and testing of the tree aboveground
biomass models for EBLF yielded the following main conclusions.

5.1. Fixed effects models

The best modeling option for fixed effects models incorporated
a covariate that was a combination of DBH, H, and WD in the form
of the equation AGB = a x (DBH?HWD)P. If only DBH and either WD
or H measurements are available, including WD proved to be more
important for increasing accuracy and the proportion of variation
explained by the model than including H for AGB.

5.2. Mixed effects models

For models without WD as a covariate, including WD
classes as a random effect improved model performance and
accuracy, and therefore the reliability of estimating AGB. This
highlights the importance of WD in modeling AGB of EBLF
in Viet Nam.

Including ecoregion as a random effect improved estimates of
EBLF for AGB = f{iDBH, WD) and AGB = f(DBH, WD, H) models. How-
ever, ecoregion as a random effect did not have a substantial
impact on DBH and DBH?H models. Therefore, while ecoregion
may increase the reliability of AGB estimates, only substantial ben-
efit is seen when WD is included as a covariate.

Plant family helped to explain variability in AGB estimates for
DBH and DBH?H models by increasing Adjusted R? and reducing
AIC, RMSPE, percent bias, and MAPE. However fit and validation
statistics for the best fixed effects model, AGB = f{DBH, H, WD),
and the AGB = f(DBH, WD) model were not substantially improved
by adding plant family as a random effect. This might be due to
plant family acting as a surrogate for WD.

We foresee future work in several directions. Examination of
below ground biomass to account for total carbon stored in ever-
green broadleaf forests of Viet Nam. Estimating below ground bio-
mass of trees will improve the inference of this study and account a
major component of carbon storage of these forests. Because stand
age and composition affect biomass allocation, we suggest devel-
oping equations that account for component biomass using new
sets of equations or biomass conversion and expansion methods
to improve total above- and belowground biomass and its
components.

This work built on an extensive field measurement campaign
supported by the UN-REDD Viet Nam Phase I Programme (2012-
2013) and research carried out by Tay Nguyen University (2010-
2013) with funding from Ministry of Education and Training - Viet
Nam. Four institutions collaborated on the field work and analysis
with technical assistance from FAO: Forest Inventory and Planning
Institute, Vietnamese Academy of Forest Sciences, Viet Nam
National University of Forestry, and Tay Nguyen University. The
author would like to acknowledge technical support from Gael Sola
during data analysis and model development with the R codes, and
for assistance with report editing by Gael Sola, Akiko Inoguchi,
Matieu Henry, and Caryn Davis.
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