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As part of Viet Nam’s effort to participate in REDD+ (reducing emissions from deforestation and forest
degradation), selected biomass equations were evaluated for their predictive abilities using data collected
from destructively sampled 110 trees from 41 species of the evergreen broadleaf forests of the South
Central Coastal region of Viet Nam. Different power models that used diameter at breast height (DBH),
tree height (H), wood density (WD), and crown area (CA) as covariates to predict aboveground biomass
(AGB) were evaluated. Best models were selected based on the coefficient of determination (R2), the
Akaike information criterion (AIC), and root mean square percent error (RMSE). AGB was strongly related
to four covariates - DBH, H, WD, and CA. While seldom mentioned in the existing literature, CA improved
the accuracy of the AGB estimation. Accuracy of the selected models was validated using the random val-
idation dataset and the model with four explanatory variables (AGB = a � (DBH2HWD)b � CAc) had the
lowest mean absolute percent error of 16.9%. Using local data, a simple power model based on DBH only
(AGB = a � DBHb) produced higher accuracy than the generic pantropical models that used up to three
variables.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Accurate biomass estimation is critical component in quantify-
ing forest carbon stocks and sequestration rates and assessing
potential impacts due to climate change. Biomass equations will
remain a key component of future carbon measurements and esti-
mation (Temesgen et al., 2015). As part of the country’s effort to
engage and prepare for REDD+ (reducing emissions from deforesta-
tion and forest degradation) program, biomass equations are being
examined in Viet Nam. Allometric equations for converting
national forest inventory data to biomass and converting it to for-
est carbon stock estimates were proposed for each of the main for-
est types and ecological regions of Viet Nam (Sola et al., 2014a,
2014b; Huy et al., 2012; Huy, 2014).

Broadly, allometry is the linear or non-linear correlationbetween
increases in tree dimensions (Picard et al., 2012). The most
important covariates for biomass equations are tree diameter at
breast height (DBH) (Brown et al., 1989, 2001; Brown, 1997;
Brown and Iverson, 1992), wood density (WD), and tree height (H)
(Chave et al., 2005; Basuki et al., 2009; Ketterings et al., 2001). WD
converts volume toweight andvaries over a considerable range (fac-
tor 4) between species (Picard et al., 2012; Chave et al., 2006). AsWD
is oftennotmeasured in thefield, averages at the species level can be
associated with trees (Fayolle et al., 2013) and such data is often
available in international databases (IPCC, 2006; Chave et al.,
2009). Further database is found at http://db.worldagroforestry.
org/wd. Furthermore, some authors suggested that crown diameter
(CD) or crown area (CA) helps to improve accuracy and reliability of
biomass estimates (Dietz and Kuyah, 2011; Henry et al., 2010).
Numerous publications suggest powermodels for building allomet-
ric equations based on one or more variables (e.g. Pearson et al.,
2007; Picard et al., 2015). Sometimes the second-order exponential
function of parabola has been used (e.g. Brown et al., 1989; Brown,
1997). Basuki et al. (2009) used the logarithmmodel for dipterocarp
forest biomass and compared with the higher-order parabolic func-
tions of Brown et al. (1989) and Chave et al. (2005). Their results
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indicated that the transformed exponential function gives smaller
deviation and higher reliability.

In countries with a limited tree flora, allometric functions are
available for most of the tree species (Jenkins et al., 2003). For
example, Jenkins et al. (2004) compiled 2640 DBH based allometric
equations for predicting total and component biomass for tree spe-
cies found in North America. Given the diversity of tropical forests,
developing species-specific equations is not realistic and research-
ers have focused on multi-species models with larger sample sizes,
e.g. Brown (1997) used 371 trees with DBH ranging from 5 cm to
148 cm and Chave et al. (2005) used 2410 trees with DBH ranging
from 5 cm to 150 cm. These generic models provide valuable infor-
mation for the tropical regions characterized by lack of data and
difficulties in accessing it. These models, however, may face limita-
tions and are potentially biased in some case where a particular
ecosystem was not represented in the development of the generic
models. Jara et al. (2015) and Chave et al. (2014) indicated that
such generic equations might lead to systematic errors of up to
400% at the site level. Locally developed models may be a better
alternative and are expected to provide less uncertainty than gen-
eric equations (Chave et al., 2014). Temesgen et al. (2007, 2015)
suggested developing comprehensive biomass estimation methods
that account for differences in site and stand density, and improve
forest biomass modeling and validation at a range of spatial scales.

For natural forests, Huy and Anh (2008) conducted a prelimi-
nary study on CO2 absorption capacity of evergreen broadleaf for-
ests in the Central Highlands of Viet Nam. In preparation for the
implementation of the UN-REDD+ program, biomass equations,
common guidelines, and sets of biomass models are being devel-
oped for each ecoregion in Viet Nam (Sola et al., 2014a, 2014b).
It has also been part of the development of database and guidelines
for the use models in Viet Nam (Henry et al., 2015).

In this context, this study aims to develop and validate local
allometric equations for evergreen broadleaf forests in the South
Central Coastal ecoregion of Viet Nam, and compare them to the
generic pantropical equations developed using data that do not
include data from Viet Nam.

2. Materials and methods

2.1. Study site

This study was carried out in the evergreen broadleaf forests of
the South Central Coastal region, which is one of the eight impor-
tant agro-ecological regions in Viet Nam and has the highest rate of
Fig. 1. Structure of evergreen broadleaf forests in
forest cover. Evergreen broadleaf forests are also common in all
ecological zones surrounding the Central Highlands and in adja-
cent forest ecosystems of Cambodia and Laos.

Sample plots were located in Quang Nam Province
(15�28013.300N to 15�28016.100N and 107�48056.600E to 107�48059.600

E), at an elevation of 574–624 m.a.s.l. with slopes of 10–40�. The
site soils are yellow brown, developed on ancient alluvium, with
pH values 6.0–6.3 and soil depth layers greater than 100 cm. Mean
annual precipitation is 3150–3500 mm with minimum and maxi-
mum precipitations 1857 mm and 5337 mm respectively. The
average annual temperature is 21.8 �C, with an annual range
between 16.0 �C and 39.4 �C. The location has two distinct seasons:
the dry season from February to August and the rainy season from
September to January. Average humidity is 90% and mean evapora-
tion is 800 mm and fog usually occurs from November to February
(Hydrometeorology Center in Central Viet Nam, 2012).

2.2. Sample plot design, tree selection, and measurement

This study was conducted in two sample plots of 1 ha
(100 m � 100 m) that were each divided into 100 sub-plots of
10 m � 10 m. Within the plots, attributes measured were (i) plot
location; (ii) stand information: forest types and status, canopy
cover, numbers of vertical forest layer, and basal area (BA); (iii)
topography: slope and location on the mountain; (iv) soil charac-
teristics: pH, depth, and color; and (vi) standing trees measure-
ments: species name (local and scientific), DBH (cm), and tree
height (H, m) of all trees with DBHP 5 cm.

Within the one-ha sample plots, the number of trees sampled
was determined by the ratio of trees in each diameter class, while
for the larger diameter classes (i.e., DBHP 45 cm) at least three
trees were sampled. Fig. 1 shows the number of trees and basal
area by DBH class in each of the inventory plot. The sample trees
were also selected based on their dominance in the stand. A total
of 110 trees, 55 from each plot, were sampled. Average DBH of
the sample trees was 25.6 cm (range 4.9–87.7 cm) and average
height was 17.5 m (range 4.7–41.4 m). The distribution of DBH
and H of the destructively sampled trees is shown in Fig. 2. Table 1
shows a summary for each of the predictors and the response vari-
ables of the destructive sample trees.

DBH, H, CD (m) (measuring in two cardinal directions – North-
South and East-West), and species of each sample tree were
recorded before the tree was felled. Tree height was re-measured
after the sample trees were felled. The fresh-weight of tree compo-
nents (leaves, branches and stem with bark) were also recorded in
the South Central Coastal region of Viet Nam.



Fig. 2. Distribution of DBH and height of destructively sampled trees.
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the field. Stems of sample trees were sectioned into five logs of
equal length and the diameter with and without bark at the base
of each log was recorded. Samples of four biomass components
were brought to lab for dry weight, fresh to dry weight ratio, and
wood density calculation. Wood and bark samples were approxi-
mately 500 g and 300 g and were taken from each of the five stem
sections. Branch samples were approximately 500 g and obtained
from three positions on branch. Approximately 300 g of leaves
were also taken to lab from each sample branch.
2.3. Laboratory measurements

When in the lab, the fresh volume of wood and bark samples
was obtained using the water displacement method. All the sam-
ples were then chipped into small pieces and dried at 105 �C until
constant weight was achieved. WD (g/cm3) of the sample was
obtained as the ratio between dry weight and green volume of each
sample. WD of sample tree was obtained as the average density of
wood samples taken from five stem segments. Volume and density
of bark samples were also obtained in similar fashion. Table 2
shows the list of species, average and standard deviation of WD,
and the number of trees sampled in each species.
2.4. Compilation of data

Volume of five stem segments with and without bark was cal-
culated using Huber’s formula (Chapman, 1921). Fresh bark vol-
ume of sample trees Vba (m3) was obtained as the difference
between volume of stem segments with bark and volume without
bark whereas the fresh bark density (dfba g/cm3) was obtained as
the average density of bark samples. The fresh biomass of bark in
each tree (Bfba kg/tree) was computed as the product of dfba and
bark volume Vba (m3/tree) as follows:

Bfba ¼ dfba � Vba � 103 ð1Þ
Fresh biomass of stem wood was then obtained by subtracting

fresh bark biomass from the fresh weight of stem. Dry biomass of
each tree component was calculated as its fresh weight multiplied
by the fresh-to-dry ratio. Aboveground biomass (AGB) of each tree
(kg) is the sum of biomass of stem (Bst), biomass of branches (Bbr),
biomass of leaves (Bl), biomass of bark (Bba) and biomass of stump
(Bstu). Crown area (m2), one of the explanatory variable in our
equations was computed using Eq. (2).

CA ¼ p
CD2

4
ð2Þ

where CD is average crown diameter (m).
2.5. Model fitting and selection

We used DBH, H, WD, and CA as covariates to predict AGB in this
study.A large rangeofmodels suchaspower, logarithm, and second-
order exponential function of parabolawere tested. However, based
on our exploratory results, wemainly used various powermodels as
final biomass equations in this study. The list of models tested for
each group of covariates or combination of covariates are given in
Table 3. In the models, the combination of DBH and H (DBH2H

(m3) = DBH
100

� �2 �H) is surrogate of volume and the combination of
DBH, H and WD (DBH2HWD (kg) = DBH2H �WD � 1000) is surro-
gate of biomass. Modeling was performed in statistical software R
(R Core Team 2015). We also examined log-linear and weighted
non-linear models using Furnival index (1961) that account for dif-
ferent response variable (i.e. AGB vs. log(AGB) (Jayaraman, 1999)).
Themodelwhichhas a lower Furnival indexand so is to bepreferred.
To account for heteroscedasticity in residuals, we fit weight non-
linear models. When the models to be compared do not have the
same formof thedependent variable, Furnival index (1961) is invari-
ably used. Best models were also selected based on coefficient of
determination (R2), Akaike information criterion (AIC), and root
mean square percent error (RMSE), ameasure of accuracy of the pre-
diction (Temesgen et al., 2014).

RMSE ð%Þ ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � ŷi

yi

� �2
vuut ð3Þ

where n is number of trees used for model development, and yi and
ŷi are observed and predicted biomass in kg.

2.6. Model validation and comparison to pantropical models

All selected models in this study were validated and compared
to each other and to generic models in term of bias (%), RMSE (%),
andmean absolute percent error (MAPE, %) - average deviation per-
cent (Mayer and Butler, 1993; Chave et al., 2005; Basuki et al.,
2009). Smaller values of these indicators are preferred. Eighty
percent of the data, equivalently 88 trees, were used to develop
allometric equations and remaining 20% data, equivalently 22 trees,
were used for model validation. The cross-validation statistics were
computed for each realization of randomly selected data, and aver-
aged over the 200 realizations (Temesgen et al., 2014).

Bias ð%Þ ¼ 1
R

XR
r¼1

100
n

Xn
i¼1

yi � ŷi
yi

ð4Þ

RMSE ð%Þ ¼ 1
R

XR
r¼1

100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � ŷi
yi

� �2
vuut ð5Þ



Fig. 3. Plots of fitted versus observed total aboveground biomass and fitted values against weighted residuals obtained from the selected models (Eqs. (7)–(11), figures a–e
respectively).

Table 1
Summary for each of the predictors and the response variables of the destructively
sampled trees.

Summary DBH (cm) H (m) WD (g/cm3) CA (m2) AGB (kg)

Min 4.9 4.7 0.430 0.79 5.9
Average 25.7 17.5 0.586 24.53 804.4
Max 87.7 41.4 0.712 201.06 8633.0
Standard deviation 21.2 8.6 0.052 31.86 1482.4
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MAPE ð%Þ ¼ 1
R

XR
r¼1

100
n

Xn
i¼1

jyi � ŷij
yi

ð6Þ

where R is number of resampling (2 0 0); n is number of trees per
resampling r, and yi and ŷi are observed and predicted biomass.
3. Results

The data set used to examine selected biomass equations cov-
ered a wide range of DBHs and heights (Table 1). There were sub-
stantial differences in the biomass estimates obtained using the
local model and the regional models suggested by IPCC (2003)
(Fig. 4).

Most of the models fitted using weighted nonlinear method had
lower Furnival’s Index and higher adjusted R2 than those models
performed by log transformation (Table 3). Hence, we used
weighted nonlinear regression to fit the AGB models for all differ-
ent covariates.

Table 4 shows the parameter estimates and indicators of model
fit obtained by using models with different covariates to estimate
AGB. Based on the AIC, RMSE and adjusted R2 values and consider-
ing the plots of fitted values against their residuals (Fig. 3), follow-
ing models for combination of covariates are selected:
AGB ¼ 0:10419� DBH2:49145 ð7Þ
AGB ¼ 266:858� DBH2H0:97233 ð8Þ
AGB ¼ 0:18879� DBH2:47329 �WD ð9Þ
AGB ¼ 0:59831� ðDBH2HWDÞ0:95979 ð10Þ
AGB ¼ 0:60205� ðDBH2HWDÞ0:88170 � CA0:16834 ð11Þ
Bias, RMSE and MAPE were calculated to validate the selected

models. Table 5 shows indicators of validation of the selected mod-
els for different combination of covariates. Bias of these models
ranged from �6.4% to 1.9%, RMSE ranged from 21.1% to 25.6%
and MAPE ranged from 16.9% to 22.1%. The performance statistics
indicate that observed and predicted AGB values closely matches,
indicating that the selected models are viable and reasonable
(Fig. 4). Among the selected models, the model with four variables
(DBH, H, WD, and CA, Eq. (11) had the lowest average MAPE of
16.9%. Fig. 5 shows histograms of MAPE of the selected models,
Eqs. (7)–(11), over the 200 realizations of randomly selected
validation data.



Table 2
Number of trees and their wood densities (average and standard deviation) by species
destructively sampled in this study.

Species name n WD (g/cm3)

Average Standard
deviation

Aglaia elaeagnoidea (A.Juss.) Benth. 1 0.485226
Aglaia roxburghiana (Wight & Arn.) Miq. 4 0.582639 0.088617
Baccaurea ramiflora Lour. 1 0.603114
Barringtonia racenmosa (L.) Spreng. 3 0.530579 0.032070
Calophyllum dryobalanoides Pierre 1 0.567293
Camellia fleuryi (A.Chev.) Sealy 4 0.597433 0.063261
Canarium littorale Blume 7 0.625701 0.021078
Cinnamomum subavenium Miq. 1 0.626005
Dillenia indica var. aurea (Sm.) Kuntze 4 0.530882 0.037693
Diospyros decandra Lour. 1 0.663821
Diospyros pilosula (A.DC.) Wall. ex Hiern 3 0.624073 0.015169
Elaeocarpus kontumensis Gagnep. 3 0.583962 0.013265
Endospermum chinense Benth. 1 0.570248
Garcinia hanburyi Hook.f. 2 0.694431 0.004850
Garcinia oliveri Pierre 2 0.627243 0.119455
Gardenia philastrei Pierre ex Pit. 1 0.565626
Gironniera subaequalis Planch. 4 0.526131 0.039544
Horsfieldia amygdalina (Wall.) Warb. 1 0.564658
Ilex annamensis Tardieu 1 0.581080
Knema pierrei Warb. 4 0.597548 0.007611
Lepisanthes rubiginosa (Roxb.) Leenh. 2 0.605106 0.062757
Lithocarpus annamensis (Hickel & A.

Camus) Barnett
7 0.579616 0.043851

Litsea baviensis var. venulosa H. Liu 1 0.514746
Litsea elliptica Blume 1 0.582340
Maclurodendron oligophlebium (Merr.)

T.G. Hartley
3 0.524136 0.032941

Madhuca alpina (A.Chev. ex Lecomte)
A.Chev.

3 0.630592 0.016732

Magnolia braianensis (Gagnep.) Figlar 3 0.598895 0.071790
Melanorrhea curtisii Oliv. 1 0.626371
Melia azedarach L. 1 0.502230
Nauclea orientalis (L.) L. 1 0.430500
Polyalthia nemoralis Aug.DC. 6 0.591398 0.034286
Prunus ceylanica (Wight.) Miq. 1 0.589221
Pterospermum diversifolium Blume 1 0.555701
Sapium baccatum Roxb. 2 0.559810 0.021850
Scaphium lychnophorum (Hance) Pierre 8 0.593851 0.024956
Shorea farinosa C.E.C.Fisch. 7 0.611231 0.035526
Sterculia parviflora Roxb. 2 0.588855 0.078540
Styrax benzoin Dryand. 1 0.556764
Syzygium levinei (Merr.) Merr. 8 0.596154 0.034810
Terminalia calamansanay Rolfe 1 0.573957
Vitex sp. 1 0.523569

Total/average 110 0.585753 0.051999
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4. Discussion

4.1. Comparison of AGB estimations

AIC, RMSE and Adjusted-R2 values were used as indicators to
compare the performance of biomass models (Table 4). As
expected, increasing the number of independent variables from
one to four reduced the AIC values and RMSE of the AGB estimates.
Tree height among diameter classes is affected by some factors
such as biological characteristics of species and growing condi-
tions. Therefore, adding height in the model improved the accuracy
of the model. WD is considered as representative of species effect
in biomass models (Picard et al., 2012). It is particularly important,
as it allows the conversion of individual tree volume into biomass.

CA and branch biomass varied greatly due to morphological
characteristics of each species. For instance, for trees with similar
DBH, H, and WD, it is easy to assume the same average biomass
of the stem, however the biomass of their branches and foliage
may differ depending on site conditions and terrain that may affect
morphology. As a result, the addition of the CA may improve the
reliability of AGB estimates where the development of species-
specific allometric equations is not a realistic option. The model
with four explanatory variables DBH, H, WD, and CA (Eq. (11))
had the lowest AIC and RMSE and the highest adjusted R2. This
model has the potential to produce the highest reliability but a
practical concern is that, with more variables, its application
becomes more complex and costly.

The power equations with combination of covariates (e.g. Eqs.
(8), (10) and (11)) are appropriate for biomass models and have
smaller number of parameters. This result is consistent with the
remarks made by Weiskittel et al. (2015) that highlighted the lim-
itations of biomass equations that are simplistic in model forms
and predictor variables are used.

4.2. Comparison of selected models with generic pantropical models

The selected equations were compared with the generic models
that depended on same number of explanatory variables (Fig. 4).
The DBH based model developed in this study was compared to
the equations of Brown (1997) and IPCC (2003) that also depended
only on DBH for tropical moist forests. Equations with two (DBH
and WD) or three variables (DBH, H and WD) were compared to
the equations published by Chave et al. (2005, 2014) developed
for tropical forests in America, Asia, and Oceania with the same
two or three variables.

With the same input variable or combination of variables, indi-
cators bias, RMSE and MAPE of the models developed in this study
were significantly lower than those of generic pantropical models.
The one-variable (DBH based) model developed in this study
reduced RMSE from 43.7% to 22.5% and MAPE was reduced by at
least 19% compared to the one-variable models of Brown (1997)
and IPCC (2003). With our three variable (DBH, H and WD) model,
the MAPE was reduced by 8.4% compared to the three variable
model of Chave et al. (2014) (Table 5). These results showed a sig-
nificant improvement of accuracy when using eco-regional models
compared to the generic models.

This finding is supported by Nelson et al. (1999) and Cairns et al.
(2003) when they applied the generic equations to their data, the
predicted values were over estimated. Basuki et al. (2009) com-
pared the local AGB equations developed for dipterocarp forests
in Indonesia to generic equations and showed that these local
and generic equations differ substantially and that site specific
equations must be considered to get a better estimation of bio-
mass. When the equations of Chave et al. (2005) and Brown
(1997) were applied to Basuki et al. (2009) data, the predicted val-
ues were over estimated.

We also observed that the accuracy of one variable DBH based
model developed in this study was higher than generic models
with up to three variables. For example, our DBH based model
reduced MAPE by 11.5% and RMSE by 13.2% compared to the gen-
eric equation of Chave et al. (2014) that is based on DBH, H, and
WD (Table 5). This suggests that, if we intend to set up generic
models for tropical areas or for the whole country, these models
will need to include random effects for each ecological region.

While, we compared models developed in this study with the
generic pantropical models, their coefficients are not directly com-
parable because of the model forms, except for the three variable
model (Eq. (10)) and the Chave et al. (2014) equation. The expo-
nent of our three variable model was similar to the exponent of
Chave et al. (2014) equation (0.959790 vs. 0.976, respectively)
but the scaling factor differed substantially, 0.598313 vs. 0.0673,
respectively. One of the reasons for these differences could be
the differences in wood densities.

The pantropical models suggested by IPCC (2003) resulted in
large bias and RMSE in estimating AGB. This is a great concern



Table 3
Models tested in each group of input variables and comparison between log transformation and weighted nonlinear fitting by using Furnival’s Index.

Input variables Biomass equations Model No. Log
transformation
model

Weighted nonlinear model

Adj. R2 FI Weight variable Adj. R2 FI

DBH AGB ¼ a� DBHb I 0.980 40.9 1/DBHk 0.930 0.023

AGB ¼ aþ b� DBH þ c � DBH2 II 1/DBHk 0.885 0.020

AGB ¼ aþ b� DBH þ c � DBH2 þ d� DBH3 III 1/DBHk 0.925 0.021

DBH and H AGB ¼ a� ðDBH2HÞb IV 0.984 36.9 1/DBHk 0.946 0.021

AGB ¼ a� DBHb � Hc V 0.985 36.0 1/DBHk 0.944 0.018

DBH and WD AGB ¼ a� DBHb �WD VI 1/DBHk 0.941 0.019

AGB ¼ a� DBHb �WDc VII 0.984 36.4 1/DBHk 0.940 0.018

DBH, H, and WD AGB ¼ a� ðDBH2HWDÞb VIII 0.987 33.3 1/(DBH2HWD)k 0.962 0.122

AGB ¼ a� DBHb � Hc �WDd IX 0.988 31.7 1/DBHk 0.957 0.015

DBH, H, WD, and CA AGB ¼ a� ðDBH2HWDÞb � CAc X 0.988 31.3 1/(DBH2HWD)k 0.963 0.096

AGB ¼ a� DBHb � Hc �WDd � CAe XI 0.989 30.7 1/DBHk 0.959 0.012

NB: FI is Furnival’s Index. Group of input variables were calculated as follows: DBH2H (m3) = (DBH (cm)/100)2 � H (m) and DBH2HWD (kg) = DBH2H (m3) �WD (g/cm3) �
1000.

Fig. 4. Graphs of the validation data and predicted values obtained by using models developed in this study and generic pantropical allometric equations.

B. Huy et al. / Forest Ecology and Management 376 (2016) 276–283 281
for scientists, citizens, and policy makers who are charged to
develop and implement policies and mechanisms to assist in mit-
igating climate change, in setting carbon inventories for National
Greenhouse Gas Inventory and for Clean Development Mechanism
projects. The revised local biomass equation will improve biomass
and carbon estimates which are key components for REDD+ and
other projects in Viet Nam.
5. Conclusion

All covariates - DBH, H, WD, and CA were strongly related to
AGB. DBH and H represent the relationship between the tree vol-
ume with biomass, while WD and CA represent the biological char-
acteristics of the species and shape of canopy. The increase of
independent variables in biomass equations from one to four



Table 5
Validation of the selected models and comparison to pantropical models (N = 22 trees by splitting randomly 200 times). The cross-validation statistics were computed for each
realization of randomly validation data, and averaged over the 200 realizations.

Models Equation Bias (%) RMSE (%) MAPE (%)

DBH
Brown (1997) AGB ¼ expð�2:134þ 2:530� lnðDBHÞÞ �33.4 43.6 36.9
IPCC (2003) AGB ¼ expð�2:289þ 2:649� lnðDBHÞ � 0:021� ðlnðDBHÞÞ2Þ �33.4 43.7 36.9

Eq. (7) AGB ¼ 0:104189� DBH2:491453 �4.6 22.5 17.9

DBH, H
Eq. (8) AGB ¼ 266:858� ðDBH2HÞ0:97233 1.9 25.6 22.1

DBH, WD
Chave et al. (2005) AGB ¼ WD� expð�1:499þ 2:148� lnðDBHÞ þ 0:207� ðlnðDBHÞÞ2 � 0:0281� ðlnðDBHÞÞ3Þ �39.3 51.0 43.3

Eq. (9) AGB ¼ 0:188791� DBH2:473292 �WD �6.4 21.7 17.5

DBH, H, WD
Chave et al. (2014) AGB ¼ 0:0673� ðWD� DBH2 � HÞ0:976 �21.0 35.7 29.4

Eq. (10) AGB ¼ 0:598313� ðDBH2HWDÞ0:959790 �3.2 25.0 21.0

DBH, H, WD, CA
Eq. (11) AGB ¼ 0:602051� ðDBH2HWDÞ0:881696 � CA0:168337 �4.1 21.1 16.9

Table 4
Parameter estimates and indicators of model fit obtained by using different input variables to estimate AGB. Parameters of all the models were significant at 0.05 level of
significance.

Model No. Parameter estimates AIC Adjusted R2 RMSE (%)

a b c d e

I 0.10419 2.491453 902.9 0.930 38.7
II 25.15789 �7.717925 0.82106 911.1 0.885 35.8
III 15.90167 �4.926814 0.59812 0.00409 917.0 0.925 37.1
IV 266.858 0.972330 884.5 0.946 31.6
V 0.05054 2.126979 0.64600 886.4 0.944 32.7
VI 0.18879 2.473292 880.8 0.941 35.6
VII 0.22885 2.466907 1.33120 887.2 0.940 35.0
VIII 0.59831 0.95979 871.5 0.962 29.5
IX 0.11198 2.150328 0.57042 1.21384 870.4 0.957 29.8
X 0.60205 0.881696 0.16834 865.3 0.963 27.2
XI 0.11494 1.968087 0.63262 1.16550 0.117818 874.3 0.959 27.9

Fig. 5. Histogram of mean absolute percent error (MAPE) of the selected models
(Eqs. (7)–(11)) over the 200 realizations of randomly selected validation dataset.
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reduces the uncertainty of the estimates. The variable CA would be
important to enhance the accuracy of the AGB estimation, while
this variable has been seldom mentioned in existing publications.
The variable CA is simple to measure and will not significantly
impact surveying costs.

Combinations of covariates for biomass models, such as DBH2H
andDBH2HWDwhich are surrogates of the tree volumeandbiomass
respectively are more appropriate than using such variables sepa-

rately. The power models such as AGB ¼ a� DBHb or the one that

uses the combination of covariates such as AGB ¼ a� ðDBH2HÞb,
AGB ¼ a� DBHb �WD, AGB ¼ a� ðDBH2 HWDÞb, or AGB ¼ a�
ðDBH2HWDÞbCAc are appropriate for biomass estimation.

The AGB estimates obtained by using the selected models
developed in this study closely matches with the observed biomass
of randomly selected validation data, and the model with four
explanatory variables (DBH, H, WD, and CA) had the lowest MAPE
of 16.9%. The local model with single variable (DBH only) has
higher reliability than generic models with up to three variables.
The existing pantropical models overestimated the AGB for the
random validation dataset. Therefore, national and pantropical
models should be developed, with random effects of ecological fac-
tors, forest types, and regions or calibrated for local use.
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