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Abstract: Bamboo forests play an important role in achieving the objectives of the United Nations
program on Reducing Emission from Deforestation and Forest Degradation. We developed and
validated a modeling system that simultaneously estimate aboveground biomass and its components
for a common bamboo species (Bambusa procera A. Chev. and A. Camus) in tropical forests.
Eighty-three bamboo culms were destructively sampled from seventeen 100 m2 sample plots located
in different parts of the Central Highlands in Viet Nam to obtain total plant aboveground biomass
(AGB) and its components. We examined the performance of weighted nonlinear models fit by
maximum likelihood and weighted nonlinear seemingly unrelated regression fit by generalized least
squares for predicting bamboo biomass. The simultaneous estimation of AGB and its components
produced higher reliability than the models of components and total developed separately. With a
large number of bamboo species, it may not be feasible to develop species- specific biomass models,
hence genus-specific allometric models may be considered.

Keywords: bamboo biomass; genus-specific model; seemingly unrelated regression; simultaneous
biomass estimation

1. Introduction

Natural bamboo forests help fight against poverty and to mitigate climate change [1,2] and offer
a variety of products for livelihoods and forest ecosystem services in the tropical regions. Bamboos
are multipurpose plants [3], and sustainable management of natural bamboo forests helps to stabilize
the livelihoods of millions of poor people in rural and mountainous areas [4]. Active management
of fast-growing bamboo species will contribute to the United Nations Collaborative Programme on
Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (UN-REDD).

Bamboo is widely distributed in the subtropics and tropics of Asia, Africa, and Latin America, has
a fast growth rate, and is very well capable of regenerating naturally [5–7]. There are 1250–1500 bamboo
species globally consisting of 75–107 genera [4]. Bamboo forests cover approximately 31.5 million
hectares, mostly in China and India [4]. In Viet Nam, bamboo forests are widely and naturally
distributed. There are approximately 200 bamboo species belonging to about 20–25 genera in the
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country [8,9], and Bambusa procera A. Chev. and A. Camus plays an important role in the local
economy [10]. The Central Highlands of Viet Nam has 186,309 hectares of natural forest of pure
bamboo forests and mixed forest of woody and bamboo species representing 8.3% of total natural
forest area in this eco-region [11]. Throughout the country, the natural bamboo forests cover about 12%
of total forested area [11]. Bambusa procera can be used to produce paper, textile, its leaves are used to
feed animals, and culms for making many kinds of handcrafts and housing materials. This species is
mainly distributed in the uplands where it helps in preventing land slide, regulating water, reducing
flooding, and it has potential in climate change mitigation due to its ability to sequester carbon.

Regardless of the botanical classification, bamboo is a woody grass, but it is capable of
accumulating carbon similar to other woody forest types [1,5]. With the high growth rate, organic
carbon accumulation due to photosynthesis is high in culms, branches, leaves, and in the network
of bamboo roots and persistent rhizomes [4]. Carbon accumulation in bamboo forests is similar
to, or higher than that of fast-growing timber plantations [2]. Yuen et al. (2017) [4] in a review
indicated that the aboveground carbon of bamboo forests ranged from 16–128 Mg C ha−1, which is
substantial compared to tropical rain forest in Asia which contains 56–320 Mg C ha−1 [12,13]. Therefore,
bamboo needs to be recognized better in forest policy and management and needs to be included in
Measurement, Reporting and Verification (MRV) of the UN-REDD program. To do this, an important
task is to develop a system of allometric equations for estimating and monitoring biomass and carbon
of the bamboo forest in this region.

Allometric equations for estimating forest biomass have been developed for many geographical
regions [4], but they mostly focus on large tree species [14–17]. In Viet Nam, previously developed
models for biomass estimation have mainly focused on trees of major tropical forests types [18–21].
Despite bamboo forests being a unique forest ecosystem with substantial carbon storage capacity,
there are very few models available for bamboo biomass and carbon estimation [22]. Current the
Intergovernmental Panel on Climate Change (IPCC) guidelines [12,13] ignore bamboo forests and
there are no guidelines for biomass and carbon inventories in the greenhouse gas emission reports [2].

Major genera of bamboo include Bambusa, Dendrocalamus, Gigantochloa, and Guadua, with Bambusa
being the most common. Most biomass models for bamboo have been developed in China, India,
Japan, and Taiwan. Yuen et al. (2017) [4] reviewed 184 studies related to 70 bamboo species belonging
to 22 genera around the world. They found that the biomass models were mostly developed for species
Phyllostachys edulis (Carriere) J.Houz and Dendrocalamus latiflorus Munro. GlobAllomeTree database,
an online data repository for global biomass data, contains 65 biomass equations for six bamboo
species (Bambusa balcooa Roxb., Bambusa bambos (L.) Voss, Bambusa cacharensis R.B.Majumdar, Bambusa
procera A.Chev. & A.Camus, Bambusa vulgaris Schrad., and Indosasa angustata McClure) developed in
India and Viet Nam [23]. However, in Vietnam, there is a need to validate their reliability to assess
the contribution of the widely distributed bamboo forests as the country prepares to implement the
UN-REDD programme.

The objectives of this study were to develop a modeling system that simultaneously estimates
aboveground biomass (AGB) and its components for a common bamboo species (Bambusa procera A.
Chev. and A. Camus) in tropical forests of Viet Nam. With a large number of bamboo species, it is not
feasible to develop species-specific biomass models. Therefore, the study also focused on evaluating
the performance of genus-specific bamboo biomass models.

2. Materials and Methods

2.1. Study Sites

The study area was located in two provinces (Dak Lak and Dak Nong) of the Central Highlands
in Viet Nam (Figure 1). Some of the ecological, environmental, and forest characteristics of the study
area are summarized in Table 1.
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Figure 1. Map of natural bamboo distribution and location of sample plots in the Central Highlands of
Viet Nam.

Table 1. Summary of selected variables at the sample plot locations and summary statistics for variables
of destructively sampled bamboo culm.

Factor/Variable Minimum Average Maximum SD

Mean annual rainfall (mm) 1800 2119 2300
Mean annual temperature (◦C) 22.3 22.6 23.0
Source: Hydrometeorology Center in the Central Highlands Viet Nam, 2017

Bedrock Acid Magma, Basalt, Shale

Soil unit Geri-Acric Ferralsols, Haplic Acrisols, Epileptic Acrisols,
Endoleptic Acrisols

Source: The Map of Soil Units in Dak Lak and Dak Nong provinces, 2008

Altitude (m) 575 700 898 91.1
Soil layer depth (cm) 30 60 100 29.4
Slope (degree) 3.0 20.5 48.0 11.7
Bamboo culm density ha−1 4000 6965 13,500 2583
Source: Sample plots

D (cm) 3.6 6.20 9.5 1.3
H (m) 6.1 14.52 25.4 4.0
A (year) 1 3 5 1.4
Bcu (kg plant−1) 1.97 7.83 26.13 4.85
Bbr (kg plant−1) 0.13 2.11 5.48 1.17
Ble (kg plant−1) 0.04 0.75 1.92 0.37
AGB (kg plant−1) 2.65 10.69 33.53 6.11
Source: Destructively sampled trees

Note: D, H, and A are the diameter at breast height of bamboo culms, height of bamboo culms, and bamboo
culm age, respectively; Bcu, Bbr, Ble, and AGB are the biomass of bamboo culms, branches, leaves, and total plant
aboveground biomass, respectively.

Sample plots were distributed in areas that were different in elevation, rainfall, bedrock, soil unit,
slope, and density of bamboo culms. There are two ecological sub-zones in Dak Lak and Dak Nong
provinces with rainfall ranging from 1800–2300 mm year−1 (averaged over five years) and dry season
lasting 3–5 months (Table 1, Figure 1).
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2.2. Bamboo Species

In this study, the bamboo species we considered is Bambusa procera A. Chev. and A. Camus in the
genus Bambusa that belongs to the Poaceae family. Briefly, the Bambusa procera species reaches heights
over 25 m, diameters larger than 9 cm, has no thorns, straight culm, is hollow, and the age spans a
range of 1–5 years (Table 1). Note that the culm developed in the study year is regarded as one-year old
culm even though some researchers use the term “current-year-old”, e.g., [24]. Bamboos of this study
were of natural origin, distributed in larger areas or intermingling with evergreen broadleaf forests.

2.3. Sample Plot, Destructive Sample, and Measurement of Variables

Seventeen sample plots of 100 m2 (10× 10 m) were selected in different ecological conditions with
varying rainfall, temperature, bedrock, soil unit, altitude, soil layer depth, and slope; and in different
bamboo forest stand structure (Table 1). The size and shape of the sample plots were consistent with
Zhuang et al. (2015) [25] for the Moso bamboo survey. Within a plot, the diameter at breast height
(D, cm) and height (H, m) were recorded, and bamboo age (A, year) was identified directly from
its morphological features [7,26]. A total of 83 bamboo culms covering the full range of sizes were
destructively sampled with D ranging from 3.6–9.5 cm, with H of 6.1–25.4 m, and bamboo culms of 1,
2, 3, 4, and 5 years old (Table 1). The diameter and height distributions of the sampled bamboo are
shown in Figure 2. The diameter distribution of destructively sampled bamboo culms was the same
with the diameter distribution of the bamboo forests (Figure 2).
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Figure 2. Top: Distribution of bamboo culm diameter (D, cm) of 17 sample plots of 100 m2. Bottom:
Distribution of bamboo culm diameter (D, cm) and bamboo culm height (H, m) of destructively-sampled
bamboo culms.

Sampled bamboo culms after cutting were re-measured for height that were used in the modeling.
Fresh biomass of three components of the bamboo culm, branches, and leaves were separated and
weighed at the site. Approximately 100–300 g sub-samples for each component—culm (at three
positions on the culm: root collar, middle, and top), branches, and leaves included young and old ones.
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In the laboratory, the samples were dried at 105 °C until constant weight to obtain the fresh-to-dry
mass ratio of each bamboo component to calculate dry biomass of the culm (Bcu, kg plant−1), branches
(Bbr, kg plant−1), leaves (Ble, kg plant−1), and total bamboo aboveground biomass (AGB, kg plant−1)
= Bcu + Bbr + Ble. Table 1 presents the summary statistics for each of the predictors and the response
variables of the destructive sampled bamboo culms; and Figure 3 shows scatterplots of Bcu, Bbr, Ble,
and AGB versus diameter (D) and the combined variable D2H = D2 (cm) × H (m).Forests 2019, 10, x FOR PEER REVIEW 6 of 18 
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2.4. Methods to Fit and Validate the Bamboo Biomass Model Systems

The process of developing, comparing, selecting and cross-validating the biomass model system
is summarized below:

• Develop and cross-validate to select independent models with appropriate predictors for each
component and AGB, using weighted nonlinear model fit by maximum likelihood.

• Develop and cross-validate a system of component models and AGB fitted simultaneously, using
weighted nonlinear SUR fit by generalized least squares; and compare with independent selected
models and previously published bamboo biomass equations.

• Finally, obtain the parameters of all selected model systems by fitting models with the
entire dataset.
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2.4.1. Covariates and Model Form

This study used predictors of D, H, or combination of D2H and power model to fit the model
systems for estimating bamboo AGB and its components Bcu, Bbr, and Ble. Selection of the predictors
and the model form for bamboo biomass is consistent with existing literature [4,22,27–29], that used the
power form with one predictor of D for estimating total biomass, AGB, and its components biomass for
Phyllostachys pubescens J.Houz., Phyllostachys edulis, Bambusa bambos, and the genus of Bambusa. Li et al.
(2016) [7] used covariate D or D and H for estimating biomass of some bamboo species. Covariate
D2H is the best for thorny bamboo biomass of components [7], and for Bambusa vulgaris [2]. However,
most bamboo biomass models used D as a sole predictor because it is both cheap and easy to measure.
Therefore, we evaluated models with combination of different predictors and also developed models
with D as the only predictor for application when other predictors are unavailable.

The power function has been widely used for biomass prediction [16,17,20,21] even though it is
outperformed by other allometric models [30]. Yuen et al. [4] and Ricardo et al. [1] also demonstrated
the power-law relation as one of the most common forms for estimating AGB and its components of
different bamboo species worldwide.

2.4.2. Log-Transformation vs. Nonlinear Fit

The power equation can be fit in two ways, as a linear model of the log-transformed data or as
a nonlinear model. Most power equations for estimating tree biomass in pantropical region were
performed by log-transformation [12,14,16,17]. Kumar et al. (2005) [27] and Yuen et al. (2017) [4] also
used log-log transformation to fit power model for Bambusa nutans Wall. ex Munro. Huy et al. (2016a,
b, c, 2019) [18–21] used nonlinear modeling approach to develop the models for AGB estimates in
tropical forests. Xiao et al. (2011) [31] suggested that the method chosen to fit power law should be
based on analyses on both error distribution and biological structure. Huy et al. (2016c) [20] compared
log-linear and non-linear models using the Furnival index [32] and showed that the power equation
nonlinear fit produced higher reliability. Therefore, we assumed nonlinear relationship to fit biomass
model for bamboo.

2.4.3. Weighted Nonlinear Models Fit by Maximum Likelihood

Weighted non-linear fit was used to account for heteroscedasticity in residuals [21,33] and
to compare and select the best predictor(s) for each biomass component of bamboo and AGB
independently [18,34,35]. Models were fitted using ‘nlme’ packages in statistical software R [36].
The form of the allometric equation, after Huy et al. (2016a, b, 2019) [18,19,21], was:

Yi = α× Xi
β + εi (1)

εi ∼ iid N
(

0, σ2
i

)
(2)

where Yi is the Bcu, Bbr, Ble, or AGB in kg for the ith bamboo culm; α and β are the parameters of the
model; and Xi is the covariate D (cm), H (m), or D2H for the ith sampled culm; and εi is the random
error associated with the ith sampled culm.

The variance function was determined as follow [18,19,21]:

Var(εi) = σ̂2(νi)
2δ (3)

where σ̂2 is the estimated error sum of squares; νi is the weighting variable (D, D2H in this study)
associated with the ith sampled culm; and δ is the variance function coefficient to be estimated.
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2.4.4. Weighted Nonlinear Seemingly Unrelated Regression (SUR) Fit by Generalized Least Squares

When the models of each component and the AGB are fit independently the total biomass
calculated from the component models is different from the estimate obtained from the independently
developed AGB model [37–39]. Seemingly unrelated regression (SUR) can solve that limitation
by allowing simultaneous estimation of the component biomass as well as AGB. Additionally, the
SUR takes into account the cross-equation correlation (i.e., correlation among error terms of the
biomass equations) among the equations and ensures the additivity among components and AGB
predictions [38–41]. The weighted nonlinear SUR was implemented by using SAS procedure Proc
Model with the generalized least squares (GLS) method [21,42].

The model system in this study had following general form [21,38,40,41]:

Bcu = a1 × X1
b1 + ε1 (4)

Bbr = a2 × X2
b2 + ε2 (5)

Ble = a3 × X3
b3 + ε3 (6)

AGB = Bcu + Bbr + Ble = a1 × X1
b1 + a2 × X2

b2 + a3 × X3
b3 + ε4 (7)

where Bcu, Bbr, Ble, and AGB are biomass of culm, branches, leaves, and total aboveground in kg
respectively; ai and bi are parameters of the power model i (i = 1, 2, 3 for culm, branches, and leaves,
respectively); Xi is the predictor variable or combination of predictor variables (D, H, or D2H) for the
ith equation; and εi is the residuals for the ith equation (i = 1, 2, 3, 4). The weighting function is 1/Xi

2δ

with δ is the variance function coefficient to be estimated [21].

2.4.5. Model Comparison, Selection, and Cross-Validation

The dataset was randomly split into two parts with 70% for model development and 30% for
validation. The cross-validation process was repeated 200 times, and statistics for comparison and
validation of the models were averaged over 200 realizations [43].

Models were selected based on the Akaike information criterion (AIC) [44], the model that had
lower AIC value was preferred; along with AIC, adj. R2 (the larger the better), statistical significance of
parameters (p-value < 0.05), and diagnostic plots of the trend of weighted residuals were also used to
assess model performance.

Cross-validation of the model was done using percent bias, root mean squared error (RMSE,
kg), and mean absolute percent error (MAPE, %). Equations that produced smaller values of
cross-validation errors were preferred:

Bias (%) =
1
R

R

∑
r=1

100
n

n

∑
i=1

yi − ŷi
yi

(8)

RMSE (kg) =
1
R

R

∑
r=1

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAPE (%) =
1
R

R

∑
r=1

100
n

n

∑
i=1

|yi − ŷi|
yi

(10)

To assess the applicability of genus-specific models, we assessed the goodness of fit of the
previously published models that were either developed for same [4,7] or different [1,45] genera of
bamboo studied in this study using the Fit Index (FI) [21,46,47]. Models that have larger FI values
are preferred:

FI = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1 (yi − y)2 (11)
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where, R is the number of realizations (200); n, N are the number of bamboo plant samples per
realization R and number of the entire plant samples, respectively; and yi, ŷi and y are the observed,
predicted and averaged Bcu, Bbr, Ble, and AGB for the ith bamboo culm in realization R, respectively.

3. Results

3.1. Components and AGB Models Fit Independently

Separate models for bamboo biomass components and AGB were developed and cross-evaluated
for different covariates including D, D and H, and D2H (Table 2). The results showed that
cross-validation statistics had little differences among the different predictors in each component
and AGB models. Most bamboo biomass components and AGB were closely related to the predictors
but the Bbr and Ble models had a weaker relation with adj. R2 ≥ 0.5, whereas Bcu and AGB models were
more closely related with adj. R2 > 0.6 (Table 2). Therefore, the model chosen was based primarily on
smaller AIC, combined with narrow variation and even distribution of weighted residuals at predicted
biomass (Figure 4). For example, the AGB model with the D2H predictor had AIC slightly larger than
the models of predictor D, (not comparing with the AGB model with D and H predictors because of H
variable’s parameter had p-value > 0.05), but its weighted residuals graph produced the narrowest
variation and spread evenly (Figure 4), so the model with the D2H input variable was selected. Figure 4
also showed the homoscedastic weighted residuals were improved, as shown by even spread of the
variation of weighted residuals.

Table 2. Cross-validation and comparison of selected biomass models for each component and bamboo
aboveground biomass.

Model Form Weight
Variable AIC Adj. R2 Averaged

Bias (%)
Averaged

RMSE (kg)
Averaged
MAPE (%)

For Bcu:
Bcu = a × Db 1/Dδ 275.4 0.606 −11.4 3.0 29.7

Bcu = a × Db × Hc 1/Dδ 275.6 0.634 −10.1 2.9 29.8
Bcu = a × (D2H)b 1/(D2H)δ 269.6 0.610 −11.2 3.0 31.9

For Bbr:
Bbr = a × Db 1/Dδ 142.9 0.548 −44.3 0.8 66.2

Bbr = a × Db × Hc 1/Dδ 143.4 0.533 −44.1 0.8 66.2
Bbr = a × (D2H)b 1/(D2H)δ 151.7 0.466 −47.4 0.9 72.6

For Ble:
Ble = a × Db 1/Dδ 11.2 0.512 −34.6 0.3 55.8

Ble = a × Db × Hc * 1/Dδ 11.4 0.521 −35.5 0.3 57.0
Ble = a × (D2H)b 1/(D2H) δ 13.5 0.487 −35.7 0.3 56.9

For AGB:
AGB = a × Db 1/Dδ 298.5 0.651 −9.1 3.6 26.9

AGB = a × Db × Hc * 1/Dδ 302.7 0.668 −10.7 3.5 28.0
AGB = a × (D2H)b 1/(D2H)δ 304.9 0.633 −11.9 3.8 31.3

Note: All statistics were calculated using the cross-validation procedure with 200 realizations, 70% randomly split
dataset for developing models, and 30% randomly split dataset for validation. *: Parameter with pvalue > 0.05. δ: the
variance function coefficient; Bold: Selected model based on cross-validation statistics and diagnostic plots. Bcu, Bbr,
Ble, and AGB are biomass of bamboo culm, branches, leaves, and total aboveground biomass, respectively.
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Figure 4. Plots of separate selected models for bamboo aboveground biomass (AGB) and its components
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biomass; Middle: Maximum likelihood weighted residuals vs. fitted biomass; and Right: Validation
data was randomly split from 30% dataset vs. predicted biomass. Bcu, Bbr, Ble, and AGB are biomass of
bamboo culm, branches, leaves, and total aboveground biomass, respectively.
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The selected models for each bamboo biomass component and AGB were in the following form:

Bcu = a × (D2H)b (12)

Bbr = a × Db (13)

Ble = a × Db (14)

AGB = a × (D2H)b (15)

3.2. Simultaneous Model System Fit by the SUR Method

We used weighted nonlinear SUR to develop and validate simultaneously fitted models for
component and AGB of the bamboo and compared them with the models developed by fitting them
independently. The simultaneous modeling systems included combinations of three components
of bamboo (Bcu, Bbr and Ble) with different predictors such as D, D and H, or D2H. Results of the
establishment and evaluation of covariates in the separate component models revealed that the Ble
and AGB models had variable H with a p-value > 0.05 (Table 2). Thus, the variable H was ignored
in combinations of model systems. Three component models (Bcu, Bbr, and Ble) and two predictors
(D and D2H) form eight combinations of model systems.

Table 3 shows the results of developing simultaneously and cross-validating the eight
combinations of the model systems applying weighted nonlinear SUR. Combination 6 produced
the smallest bias, RMSE, and MAPE for most biomass components.

Table 3. Using SUR method to develop and validate simultaneously model combinations with
200 realizations; 70% randomly split dataset for developing simultaneous models; and 30% randomly
split dataset for validation, calculation of averaged bias, RMSE, and MAPE.

Combination of Component
Equation Systems Weight Variable Averaged Bias

(%)
Averaged RMSE

(kg)
Averaged MAPE

(%)

Combination 1:
Bcu = a1 × Db1 1/D −10.7 3.3 32.2
Bbr = a2 × Db2 1/D −57.0 0.8 78.9
Ble = a3 × Db3 1/D −32.0 0.3 53.5

AGB = Bcu + Bbr + Ble 1/D −10.7 3.9 29.3

Combination 2:
Bcu = a1 × (D2H)b1 1/D2H −4.1 3.4 33.3
Bbr = a2 × (D2H)b2 1/D2H −63.5 1.0 87.5
Ble = a3 × (D2H)b3 1/D2H −42.7 0.3 63.5

AGB = Bcu + Bbr + Ble 1/D2H −7.8 4.1 30.5

Combination 3:
Bcu = a1 × Db1 1/D −16.5 3.4 35.1

Bbr = a2 × (D2H)b2 1/D2H −52.4 0.9 79.0
Ble = a3 × Db3 1/D 41.4 0.7 90.3

AGB = Bcu + Bbr + Ble 1/D2H −9.2 3.9 28.4

Combination 4:
Bcu = a1 × Db1 1/D −21.9 3.5 38.5
Bbr = a2 × Db2 1/D 15.2 1.5 86.4

Ble = a3 × (D2H)b3 1/D2H 29.5 0.5 75.6
AGB = Bcu + Bbr + Ble 1/D2H −4.3 4.0 27.8

Combination 5:
Bcu = a1 × (D2H)b1 1/D2H −1.0 3.3 30.2

Bbr = a2 × Db2 1/D −103.1 1.1 115.0
Ble = a3 × Db3 1/D 61.1 0.6 79.8

AGB = Bcu + Bbr + Ble 1/D2H −4.2 3.9 27.8
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Table 3. Cont.

Combination of Component
Equation Systems Weight Variable Averaged Bias

(%)
Averaged RMSE

(kg)
Averaged MAPE

(%)

Combination 6:
Bcu = a1 × (D2H)b1 1/D −1.8 3.2 30.5
Bbr = a2 × (D2H)b2 1/D2H −44.7 0.9 74.1

Ble = a3 × Db3 1/D2 −28.9 0.3 50.8
AGB = Bcu + Bbr + Ble 1/D2 −2.2 3.8 28.3

Combination 7:
Bcu = a1 × Db1 1/D −10.5 3.2 31.6

Bbr = a2 × (D2H)b2 1/D2H −56.4 0.9 81.5
Ble = a3 × (D2H)b3 1/D2H 19.6 0.5 74.0

AGB = Bcu + Bbr + Ble 1/D2H −6.4 3.8 27.1

Combination 8:
Bcu = a1 × (D2H)b1 1/D2H −11.1 3.2 32.3

Bbr = a2 × Db2 1/D −55.7 0.9 76.8
Ble = a3 × (D2H)b3 1/D2H −31.7 0.3 52.5

AGB = Bcu + Bbr + Ble 1/D2H −11.2 3.8 30.0

Note: Bold: Selected simultaneous model combination based on cross validation statistics. Bcu, Bbr, Ble, and AGB
are biomass of bamboo culm, branches, leaves, and total aboveground biomass, respectively.

The forms of simultaneous model system were selected as follows:

Bcu = a1 × (D2H)b1 (16)

Bbr = a2 × (D2H)b2 (17)

Ble = a3 × Db3 (18)

AGB = Bcu + Bbr + Ble = a1 × (D2H)b1 + a2 × (D2H)b2 + a3 × Db3 (19)

Table 4 shows the model system parameters obtained from final models fit simultaneously with
the entire dataset. However, in practice, the measurement of bamboo height (H) is difficult and costly,
so we estimated the parameters for the model system simultaneously with sole D predictor and have
presented this system in Table 5.

Table 4. SUR method estimating parameters of selected model combination of bamboo biomass
components using the entire dataset.

Model Form Weight
Variable Parameter Estimate ± Approx.

Std Error
Entire RMSE

(kg) Adj. R2

Bcu = a1 × (D2H)b1 1/D a1
b1

0.02269 ± 0.00746
0.90703 ± 0.04890 2.95 0.631

Bbr = a2 × (D2H)b2 1/D2H
a2
b2

0.02015 ± 0.01010
0.72251 ± 0.07280 0.84 0.488

Ble = a3 × Db3 1/D2 a3
b3

0.03420 ± 0.01760
1.67330 ± 0.25700 0.25 0.535

AGB = Bcu + Bbr + Ble =
a1 × (D2H)b1 + a2 ×
(D2H)b2 + a3 × Db3

1/D2 a1, b1, a2, b2,
a3, b3

idem 3.62 0.649

Note: Bcu, Bbr, Ble, and AGB are biomass of bamboo culm, branches, leaves, and total aboveground biomass,
respectively. All parameter have a p-value < 0.05.
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Table 5. SUR method estimating parameters of simple model combination with single variable D of
bamboo biomass components using the entire dataset.

Model Form Weight
Variable Parameter Estimate ± Approx.

Std Error
Entire RMSE

(kg) Adj. R2

Bcu = a1 × Db1 1/D a1
b1

0.098137 ± 0.00976
2.365691 ± 0.04930 2.96 0.627

Bbr = a2 × Db2 1/D a2
b2

0.052164 ± 0.01570
2.004830 ± 0.15030 0.77 0.567

Ble = a3 × Db3 1/D a3
b3

0.030439 ± 0.00948
1.741870 ± 0.15720 0.25 0.536

AGB = Bcu + Bbr + Ble = a1 ×
Db1 + a2 × Db2 + a3 × Db3 1/D a1, b1, a2, b2,

a3, b3
idem 3.58 0.657

Note: Bcu, Bbr, Ble, and AGB are biomass of bamboo culm, branches, leaves, and total aboveground biomass,
respectively. All parameter have a p-value < 0.05.

3.3. Comparison with Previously Published Models

The validation dataset of 30% random splitting data was also used and repeated 200 times to
validate the performance of other allometric equations developed in the tropics and compared with
the selected AGB equation fit by SUR in this study.

As a result, the errors of predicted AGB using models with the same genus Bambusa such as
model of Yuen et al. (2017) [4] for Bambusa nutans species and model of Li et al. (2016) [7] for Bambusa
stenostachya Hack. species were not substantially different from the errors of the selected model of this
study for Bambusa procera species. The FI statistic of the model selected in this study and two of the
previously published models for the Bambusa genus suggested that these models well (Table 6 and
Figure 5, left)

Table 6. Cross validation of AGB model fitted by SUR of this study and other AGB models worldwide
with the different/same genus.

Source Genus/Species-
Specific Selected Model Fit Index

(FI)
Averaged
Bias (%)

Averaged
RMSE (kg)

Averaged
MAPE (%)

This study, 2018,
Viet Nam

Bambusa
procera

AGB = Bcu + Bbr +
Ble = 0.02269 ×
(D2H)0.90703 +

0.02015 ×
(D2H)0.72251 +

0.03420 × D1.67330

0.66 −2.2 3.8 28.3

Yuen et al., 2017
[4] in Thailand

Bambusa
nutans

AGB = 0.269 ×
D2.107 0.48 −17.4 3.7 31.4

Li et al., 2016 [7] in
Taiwan

Bambusa
stenostachya

AGB = 0.0262 ×
(D2H) 0.9215 0.62 5.5 3.9 27.6

Ricardo et al., 2013
[1] in Bolivia

Guadua
angustifolia

AGB = 2.6685 ×
D0.9879 −0.23 −87.5 6.8 90.8

Yen et al., 2010
[45] in Taiwan

Phyllostachys
makinoi

AGB = 1.112 ×
D2.695 × H−1.175 0.04 19.2 6.1 39.4

Note: Using SUR method to develop and validate simultaneously model combinations with 200 realizations;
70% randomly split dataset for developing simultaneous models; and 30% randomly split dataset for validation,
calculation of averaged Bias, RMSE and MAPE for this study model system and other compared models. Bcu, Bbr,
Ble, and AGB are biomass of bamboo culm, branches, leaves, and total aboveground biomass, respectively.

While AGB models of other bamboo species from different genera such as Ricardo et al. (2013) [1]
for the species Guadua angustifolia Kunth overestimated AGB and gave very high errors and significant
differences with the errors of the Bambusa procera model in this study (Table 6 and Figure 5, right).
Yen et al. (2010) [45] models for Phyllostachys makinoi Hayata had high errors compared with the errors
of the Bambusa genus models (Table 6), and the plot of prediction vs. observation (Figure 5, right)
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shows that the model of Yen et al. (2010) [45] underestimated AGB. Models developed for different
genera from Bambusa genus of this study showed very low or negative FI statistics (Table 6).
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4. Discussion

4.1. Predictors for Bamboo AGB and its Components

Biomass of bamboo branches (Bbr) and leaves (Ble) are highly variable and difficult to predict
through empirical models (Figure 3, Figure 4). The relationship between Bbr, Ble with covariates D,
D2H usually only reached R2 of approximately 0.5. This is consistent with the results of Melo et al.
(2015) [28] and Li et al. (2016) [7]. Yen et al., (2010) [45] showed that the relationship between carbon
biomass of foliage, branches for Makino bamboo species (Phyllostachys makinoi) with variable D of
power function had R2 = 0.5–0.6.

The biomass of the culm (Bcu) and AGB were closely related to the D variable or combination of
variables D2H, this result is consistent with Melo et al. (2015) [28] and Li et al. (2016) [7]. However, the
H-variable model is difficult to apply to bamboo, as H is difficult to measure due to culm density [4,48].
Thus, many models for bamboo components and AGB used sole variable D (e.g., Kaushal et al.,
2016) [49] for Dendrocalamus strictus (Roxb.) Nees. However, components and AGB models with the
addition of the variable H to the variable combination (D2H) reduced the uncertainty, this is consistent
with results of Yiping et al. (2010) [5], Ricardo et al. (2013) [1], Li et al. (2016) [7], and Yuen et al.
(2017) [4]. Nevertheless, sole H variable is site index if the H involved in the D2H variable combination
reduced the site model specificity [50].

There are very few models for estimating belowground biomass (BGB) for bamboo plant that
includes rhizome, coarse and fine roots. The reason is mainly the difficulty of collecting datasets of
bamboo root system to develop the allometric equations. Yuen et al. (2017) [4] indicated that there are
no bamboo plant BGB models found in Southeast Asia. Some BGB equations exist for Bambusa bambos
in India, Phyllostachys edulis in China [4]. BGB is sometimes estimated via root-shoot ratio (RSR), it is
ratio of BGB to AGB [4].

4.2. Independent vs. Simultaneous Model Fit

Using the biomass models of AGB and its components developed simultaneously reduced the
errors in biomass prediction compared to the models fitted independently (Table 2 vs. Table 3). This
result is consistent with the findings of Poudel and Temesgen (2016) [38]. The simultaneously fitted



Forests 2019, 10, 316 14 of 17

model system decreased percent bias and MAPE by −10%, and 3%, respectively, compared to the
models fitted independently (Table 2 vs. Table 3). A Bland–Altman plot [51] also indicated the
significant difference between predicted AGB from SUR model system and non- SUR model (Figure 6).
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In addition, SUR provided the additivity that ensures the aboveground biomass was equal to the
sum of the biomass of the bamboo components [39]. Therefore, this approach should be promoted to
develop and estimate simultaneously biomass of components and total [37].

It should be noted that, the RMSE and R2 of the two modeling systems were not substantially
different (Table 4 vs. Table 5). However, the errors of the modeling system that uses two predictors D
and H (Combination 6) were smaller than the errors produced by the modeling system that used D
as the only predictor (Combination 1). The best modeling system using two predictors of D and H is
shown in Table 4. The modeling system using D as the only predictor (Table 5) should only be applied
when measuring H is difficult and/or costly.

4.3. Species-Specific vs. Genus-Specific Models

Yuen et al. (2017) [4] showed that most bamboo biomass models were species-specific. Our results
showed that the biomass models developed for same Bambusa genus were similar in terms of the
goodness of fit whereas models developed for the Guadua and Phyllostachy genera showed a large bias
(Figure 5). Therefore, while bamboo biomass models have not been totally established, developing
genus-specific bamboo models should be considered to reduce the volume of model establishment.
However, the uncertainty around model parameters should be tested using statistics such as percent
relative standard error [52].

5. Conclusions

The modeling system for estimating AGB and its components simultaneously produced higher
reliability compared to independently developed models. The forms of simultaneous model system for
estimating AGB and its component of Bambusa procera species were developed and selected as follows:
Bcu = a1 × (D2H)b1, Bbr = a2 × (D2H)b2, Ble = a3 × Db3 and AGB = Bcu + Bbr + Ble = a1 × (D2H)b1 + a2
× (D2H)b2 + a3 × Db3.

Development of genus-specific bamboo models should be considered to reduce the volume of
developing species-specific models for estimating the bamboo biomass.

Author Contributions: B.H. and G.T.T. collected the datasets and analyzed the raw data; B.H., H.T., and K.P.P.
developed the hypotheses and methodology; B.H., G.T.T., K.P.P., and H.T. wrote the paper.

Funding: This study used the fund for research and training in MSc, and Ph.D. at Department of Forest Resources
and Environment Management (FREM), Tay Nguyen University (TNU).



Forests 2019, 10, 316 15 of 17

Acknowledgments: We are grateful to the Consultancy for Forest Resources and Environment Management
(FREM), TNU and those who involved in great efforts for collecting the database of bamboo biomass in field
of the Central Highlands of Viet Nam. We also would like to thank three reviewers for their useful comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ricardo, A.; Li, T.; Lora, G.; Andersen, L.E. A Measurement of the Carbon Sequestration Potential of Guadua
angustifolia in the Carrasco National Park, Bolivia; Development Research Working Paper Series, No. 04/2013;
Institute for Advanced Development Studies: La Paz, Bolivia, 2013; 17p.

2. Sohel, M.S.I.; Alamgir, M.; Akhter, S.; Rahman, M. Carbon storage in a bamboo (Bambusa vulgaris) plantation
in the degraded tropical forests: Implications for policy development. Land Use Policy 2015, 49, 142–151.
[CrossRef]

3. Tariyal, K. Bamboo as a successful carbon sequestration substrate in Uttarakhand: A brief analysis. Int. J.
Curr. Adv. Res. 2016, 5, 736–738.

4. Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystem worldwide: Estimates and
uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [CrossRef]

5. Yiping, L.; Yanxia, L.; Buckingham, K.; Henley, G.; Guomo, Z. Bamboo and Climate Change; Technical Report
No. 32; The International Network for Bamboo and Rattan (INBAR): Beijing, China, 2010; 47p.

6. Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of carbon fixation in bamboo forests in China. Bot. Rev. 2011, 77,
262–270. [CrossRef]

7. Li, L.E.; Lin, Y.J.; Yen, T.M. Using allometric models to predict the aboveground biomass of thorny bamboo
(Bambusa stenosstachya) and estimate its carbon storage. Taiwan J. Sci. 2016, 31, 31–47.

8. Ho, P.H. An Illustrated Flora of Viet Nam; Publishing House “Tre”: Ho Chi Minh City, Vietnam, 2003; Volume III,
1020p. (In Vietnamese)

9. Nghia, N.H. Bamboos of Vietnam; Agricultural Publishing House: Ha Noi, Vietnam, 2005. (In Vietnamese)
10. Rao, A.N.; Rao, V.R. (Eds.) Bamboo—Conservation, Diversity, Ecogeography, Germplasm, Resource

Utilization and Taxonomy. In Proceedings of the Training Course cum Workshop, Kunming and
Xishuangbanna, China, 10–17 May 1998; IPGRI-APO: Serdang, Malaysia, 1999. ISBN 92-9043-414-7.

11. VNForest. Viet Nam Forest Resources Downloading Data Tool. FORMIS II; version 1.0.4; Vietnam Administration
of Forestry: Ha Noi, Vietnam, 2017.

12. IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; IPCC National Greenhouse Gas
Inventories Programme: Hayama, Japan, 2003; 590p.

13. IPCC. Forest Land. Chapter 4, 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Prepared by
the National Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T.,
Tanabe, K., Eds.; IGES: Kanagawa, Japan, 2006; 83p.

14. Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; FAO Forestry paper—134; FAO:
Rome, Italy, 1997; ISBN 92-5-103955-0. Available online: http://www.fao.org/docrep/W4095E/w4095e00.
htm#Contents (accessed on 1 September 2018).

15. Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Folster, H.; Fromard, F.; Higuchi, N.;
Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests.
Oecologia 2005, 145, 87–99. [CrossRef]

16. Basuki, T.M.; van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the
aboveground biomass in the tropical lowland Dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694.
[CrossRef]

17. Chave, J.; Mechain, M.R.; Burquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.;
Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of
tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [CrossRef]

18. Huy, B.; Kralicek, K.; Poudel, K.P.; Phương, V.T.; Khoa, P.V.; Hung, N.D.; Temesgen, H. Allometric Equations
for Estimating Tree Aboveground Biomass in Evergreen Broadleaf Forests of Viet Nam. For. Ecol. Manag.
2016, 382, 193–205. [CrossRef]

http://dx.doi.org/10.1016/j.landusepol.2015.07.011
http://dx.doi.org/10.1016/j.foreco.2017.01.017
http://dx.doi.org/10.1007/s12229-011-9082-z
http://www.fao.org/docrep/W4095E/w4095e00.htm#Contents
http://www.fao.org/docrep/W4095E/w4095e00.htm#Contents
http://dx.doi.org/10.1007/s00442-005-0100-x
http://dx.doi.org/10.1016/j.foreco.2009.01.027
http://dx.doi.org/10.1111/gcb.12629
http://dx.doi.org/10.1016/j.foreco.2016.10.021


Forests 2019, 10, 316 16 of 17

19. Huy, B.; Poudel, K.P.; Kralicek, K.; Hung, N.D.; Khoa, P.V.; Phương, V.T.; Temesgen, H. 2016b. Allometric
Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Viet Nam. Forests
2016, 7, 180. [CrossRef]

20. Huy, B.; Poudel, K.P.; Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in
South Central Coastal ecoregion of Viet Nam: Selection of eco-regional or pantropical models. For. Ecol.
Manag. 2016, 376, 276–283. [CrossRef]

21. Huy, B.; Tinh, N.T.; Poudel, K.P.; Frank, B.M.; Temesgen, H. Taxon- specific modeling systems for improving
reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests.
For. Ecol. Manag. 2019, 437, 156–174. [CrossRef]

22. Zhou, Y.; Kawahara, K.K.; Ito, H. Net production and carbon cycling in a bamboo Phyllostachys pubescens
stand. Plant Ecol. 1997, 130, 41–52.

23. Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.;
Longuetaud, F.; Valentini, R.; et al. GlobAllomeTree: International platform for tree allometric equations to
support volume, biomass and carbon assessment. Iforest Biogeosci. For. 2013, 6, 326–330. [CrossRef]

24. Yen, T.M. Comparing aboveground structure and aboveground carbon storage of an age series of moso
bamboo forests subjected to different management strategies. J. For. Res. 2015, 20, 1–8. [CrossRef]

25. Zhuang, S.; Ji, H.; Zhang, H.; Sun, B. Carbon storage estimation of Moso bamboo (Phyllostachys pubescens)
forest stands in Fujian, China. Trop. Ecol. 2015, 56, 383–391.

26. Huy, B.; Sharma, B.D.; Quang, N.V. Participatory Carbon Monitoring: Manual for Local Staff ; Netherlands
Development Organization (SNV): Ho Chi Minh City, Vietnam, 2013; 50p.

27. Kumar, B.M.; Rajesh, G.; Sudheesh, K.G. Aboveground biomass production and nutrient uptake of thorny
bamboo (Bambusa bambos (L.) Voss) in the homegardens of Thrissur, Kerala. J. Trop. Agric. 2005, 43, 51–56.

28. Melo, L.C.D.; Sanquetta, C.R.; Corte, A.P.D.; Mognon, F. Methodological alternatives in the estimate of
biomass for young individuals of Bambusa spp. Biosci. J. Uberlândia 2015, 31, 791–800. [CrossRef]

29. Qi, L.; Liu, X.; Jiang, Z.; Yue, X.; Li, Z.; Fu, J.; Liu, G.; Guo, B.; Shi, L. Combining diameter-dsitribution
function with allometric equation in biomass estimates: A case study of Phyllostachys edulis forests in South
Anhui, China. Agrofor.Syst. 2015. [CrossRef]

30. Picard, N.; Rutishauser, E.; Ploton, P.; Ngomanda, A.; Henry, M. Should tree biomass allometry be restricted
to power models? For. Ecol. Manag. 2015, 353, 156–163. [CrossRef]

31. Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L. On the use of log-transformation vs. nonlinear regression
for analyzing biological power laws. Ecology 2011, 92, 1887–1894. [CrossRef] [PubMed]

32. Furnival, G.M. An index for comparing equations used in constructing volume tables. For. Sci. 1961, 7,
337–341.

33. Davidian, M.; Giltinan, D.M. Nonlinear Models for Repeated Measurement Data; Chapman and Hall/CRC:
London, UK, 1995; 360p.

34. Bates, D.M. lme4: Mixed-Effects Modeling with R; Springer: Berlin/Heidelberg, Germany, 2010; 131p.
35. Pinheiro, J.; Bates, D.; Debroy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models,

R package version 3.1-117; R Foundation for Statistical Computing: Vienna, Austria, 2018.
36. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2018.
37. Sanquetta, C.R.; Behling, A.; Corte, A.P.D.; Netto, S.P.; Schikowski, A.B. Simultaneous estimation as

alternative to independent modeling of tree biomass. Ann. For. Sci. 2015, 72, 1099–1112. [CrossRef]
38. Poudel, K.P.; Temesgen, H. Methods for estimating aboveground biomass and its components for Douglas-fir

and lodgepole pine trees. Can. J. For. Res. 2016, 46, 77–87. [CrossRef]
39. Gonzalez-Benecke, C.A.; Zhao, D.; Samuelson, L.J.; Martin, T.A.; Leduc, D.J.; Jack, S.B. Local and General

Aboveground Biomass Functiuons for Pinus palustrics Trees. Forests 2018, 9, 310. [CrossRef]
40. Parresol, B.R. Additivity of nonlinear biomass equations. Can. J. For. Res. 2001, 31, 865–878. [CrossRef]
41. Kralicek, K.; Huy, B.; Poudel, K.P.; Temesgen, H.; Salas, C. Simultaneous estimation of above- and

below-ground biomass in tropical forests of Viet Nam. For. Ecol. Manag. 2017, 390, 147–156. [CrossRef]
42. SAS Institute Inc. SAS/ETS®13.2 User’s Guide. Chapter 19: The MODEL Procedure; SAS Institute Inc.: Cary,

NC, USA, 2014; pp. 1067–1373.

http://dx.doi.org/10.3390/f7080180
http://dx.doi.org/10.1016/j.foreco.2016.06.031
http://dx.doi.org/10.1016/j.foreco.2019.01.038
http://dx.doi.org/10.3832/ifor0901-006
http://dx.doi.org/10.1007/s10310-014-0455-0
http://dx.doi.org/10.14393/BJ-v31n3a2015-26098
http://dx.doi.org/10.1007/s10457-015-9887-6
http://dx.doi.org/10.1016/j.foreco.2015.05.035
http://dx.doi.org/10.1890/11-0538.1
http://www.ncbi.nlm.nih.gov/pubmed/22073779
http://dx.doi.org/10.1007/s13595-015-0497-2
http://dx.doi.org/10.1139/cjfr-2015-0256
http://dx.doi.org/10.3390/f9060310
http://dx.doi.org/10.1139/x00-202
http://dx.doi.org/10.1016/j.foreco.2017.01.030


Forests 2019, 10, 316 17 of 17

43. Temesgen, H.; Zhang, C.H.; Zhao, X.H. Modelling tree height-diameter relationships in multi-species and
multi-layered forests: A large observational study from Northeast China. For. Ecol. Manag. 2014, 316, 78–89.
[CrossRef]

44. Akaike, H. Information theory as an extension of the maximum likelihood principle. In Second International
Symposium on Information Theory; Petrov, B.N., Csaki, F.E., Eds.; Akademiai Kiado: Budapest, Hungary, 1973;
pp. 267–281.

45. Yen, T.M.; Ji, Y.J.; Lee, J.S. Estimating biomass production and carbon storage for a fast-growing makino
bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 2010, 260,
339–344. [CrossRef]

46. Parresol, B.R. Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons.
For. Sci. 1999, 45, 573–593.

47. Subedi, B.P.; Pandey, S.S.; Pandey, A.; Rana, E.B.; Bhattarai, S.; Banskota, T.R.; Charmakar, S.; Tamrakar, R.
Forest Carbon Stock Measurement. Guidelines for Measuring Carbon Stocks in Community-Managed Forests;
Asia Network for Sustainable Agriculture and Bioresources (ANSAB); International Center for Integrated
Mountain Development (ICIMOD); Federation of Community Forest Users, Nepal (FECOFUN): Kathmandu,
Nepal, 2010; 69p.

48. Zhang, H.; Zhuang, S.; Sun, B.; Ji, H.; Li, C.; Zhou, S. Estimation of biomass and carbon storage of Moso
bamboo (Phyllostachys pubescens Mazel ex Houz.) in Southern China using a diameter- age bivariate
distribution model. For. Int. J. For. Res. 2014, 87, 674–682. [CrossRef]

49. Kaushal, R.; Subbulakshmi, V.; Tomar, J.M.S.; Alam, N.M.; Jayaparkash, J.; Mehta, H.; Chaturvedi, O.P.
Predictive models for biomass and carbon estimation in male bamboo (Dendrocalamus strictus L.) in Doon
valley, India. Acta Ecol. Sin. 2016, 36, 469–476. [CrossRef]

50. Dutca, I.; Mather, R.; Blujdea, V.N.B.; Ioras, , F.; Olari, M.; Abrudan, L.V. Site-effects on biomass allometric
models for early growth plantations of Norway spruce (Picea abies (L.) Karst.). Biomass Bioenergy 2018, 116,
8–16. [CrossRef]

51. Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med Res. 1999,
8, 135–160. [CrossRef] [PubMed]

52. Sileshi, G.W. A critical review of forest biomass estimation models, common mistakes and corrective
measures. For. Ecol. Manag. 2014, 329, 237–254. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.foreco.2013.07.035
http://dx.doi.org/10.1016/j.foreco.2010.04.021
http://dx.doi.org/10.1093/forestry/cpu028
http://dx.doi.org/10.1016/j.chnaes.2016.07.003
http://dx.doi.org/10.1016/j.biombioe.2018.05.013
http://dx.doi.org/10.1177/096228029900800204
http://www.ncbi.nlm.nih.gov/pubmed/10501650
http://dx.doi.org/10.1016/j.foreco.2014.06.026
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Sites 
	Bamboo Species 
	Sample Plot, Destructive Sample, and Measurement of Variables 
	Methods to Fit and Validate the Bamboo Biomass Model Systems 
	Covariates and Model Form 
	Log-Transformation vs. Nonlinear Fit 
	Weighted Nonlinear Models Fit by Maximum Likelihood 
	Weighted Nonlinear Seemingly Unrelated Regression (SUR) Fit by Generalized Least Squares 
	Model Comparison, Selection, and Cross-Validation 


	Results 
	Components and AGB Models Fit Independently 
	Simultaneous Model System Fit by the SUR Method 
	Comparison with Previously Published Models 

	Discussion 
	Predictors for Bamboo AGB and its Components 
	Independent vs. Simultaneous Model Fit 
	Species-Specific vs. Genus-Specific Models 

	Conclusions 
	References

