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Abstract
Aim of study: To develop and cross-validate simultaneous modeling systems for estimating components and total tree 

aboveground biomass and carbon of Litsea glutinosa in an agroforestry model with cassava.
Area of study: In the Central Highlands of Vietnam, the agroforestry model widely planted on fallow land of ethnic mi-

norities is a mixture of 65% L. glutinosa in combination with 35% cassava (Manihot esculenta).
Materials and methods: Twenty-two 300-m2 circular sample plots were located, representing the range of tree age, plan-

tation density, and a 6-7 year rotation cycle. In each sample plot, one selected tree with a diameter at breast height equal to 
the plot quadratic mean diameter was destructively sampled. The relationships among tree aboveground biomass and car-
bon (AGB/AGC) and their components with dendrometric variables diameter, height, age, and crown area were examined 
using factor analysis. To fit systems of equations for AGB/AGC and their components, we compared two methods: weighted 
nonlinear least-squares (WNLS) and weighted nonlinear seemingly unrelated regression (WNSUR).

Main results: The results of the leave-one-out cross-validation showed that the simultaneous WNSUR approach to mod-
eling systems of four tree components, total biomass, and carbon provided better results than independent WNLS models.

Research highlights: The simultaneous WNSUR modeling system provided improved and reliable estimates of tree 
components, total biomass, and carbon for L. glutinosa in an agroforestry model with cassava compared to independently 
fitted WNLS models.

Additional key words: simultaneous modeling system; tree biomass-carbon; weighted non-linear-SUR.
Abbreviations used: A (tree’s age); AGB (aboveground biomass); AGC (aboveground carbon); AIC (Akaike informa-

tion criterion); BA (basal area per hectare); Bba (dry biomass of bark); Bbr (dry biomass of branches); Ble (dry biomass of 
leaves); Bst (dry biomass of stem); CA (crown area of the trees sampled); Cba (carbon content of tree bark); Cbr (carbon 
content of tree branches); CD (crown diameter in two cardinal directions, N-S and E-W); CF (average carbon fraction); Cle 
(carbon content of tree leaves); Cst (carbon content of tree stem); D (diameter at breast height); Dg (quadratic mean diame-
ter); H (tree height); Hg (height of the tree with Dg); LOOCV (leave-one-out-cross validation); MAPE (mean absolute per-
cent error); Nplant (planting density); Nstem (number of stems per ha); Nstemplant (average numbers of stems per plant); 
RMSE (root mean square error); SUR (seemingly unrelated regression); WD (wood density); WNLS (weighted nonlinear 
least-squares); WNSUR (weighted nonlinear seemingly unrelated regression). 
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Introduction

Litsea glutinosa (Lour.) C. B. Rob. belongs to the Lau-
raceae family and is a small to medium-sized tree species 
that grows naturally throughout Asia (Heuze et al., 2015; 
Hinsinger & Strijk, 2016; Useful Tropical Plants, 2021). In 
the Central Highlands of Vietnam, this species is distributed 
in tropical evergreen broadleaf forests and is widely planted 
in combination with cassava (Manihot esculenta Crantz) in 
the agroforestry model on fallow land of ethnic minorities 
(Huy, 2009a, 2009b, 2014). In this agroforestry model, L. 
glutinosa provides valuable biomass to the industry, espe-
cially valuable stem bark, and contributes to ecosystem ser-
vices such as sequestering CO2 (Huy, 2009a, 2009b, 2014).

L. glutinosa is a fast-growing multi-purpose plant. Its 
bark contains essential oils used in the pharmaceutical in-
dustry (Heuze et al., 2015), industrial glues, and manufac-
turing paints (Tiwari et al., 2010). Bark extract is used as an 
ingredient in commercial cosmetic preparations such as a 
skin conditioner (Useful Tropical Plants, 2011) and incense 
for religious services. Its golden brown hardwood is used for 
furniture and paper manufacturing. Additionally, wood and 
bark contain gluten and are used as binders (Useful Tropical 
Plants, 2021). Its leaves are used as fodder for livestock. 
The medicinal value of L. glutinosa has been mentioned in 
many studies. Its root bark is anti-inflammatory (Wua et al., 
2017), stem bark is an antidiarrheal (Sumithregowda et al., 
2017), and L. glutinosa is also used to treat joint and back 
pain (Pandey & Mandal, 2012). Among the different com-
ponents, the biomass of the stem bark of L. glutinosa has the 
highest value (Huy, 2009a, 2009b; Mulia & Nguyen, 2021). 
Therefore, L. glutinosa is also considered one of the most 
important non-timber forest tree species in many countries 
such as Vietnam and India (Mohammad et al., 2020).

The agroforestry model with L. glutinosa and cassava is 
easy to grow, does not require intensive care, and provides 
various products from forest trees and agricultural crops. 
Therefore, it is suitable for the farming practices of ethnic 
minorities in tropical highlands. On the other hand, planting 
this tree species in agroforestry models also plays an impor-
tant role in absorbing CO2 to mitigate the greenhouse effect 
(Mulia & Nguyen, 2021). Therefore, there is a demand to 
develop a modeling system for L. glutinosa species to esti-
mate individual tree biomass and the carbon sequestration 
potential of this species in an agroforestry system.

Allometric equations have usually been developed to es-
timate the biomass of aboveground components, including 
stem, branches, leaves, bark, and the total aboveground bio-
mass (AGB). Although biomass components are sometimes 
modeled independently of each other, the tree parts and the 
tree total biomass are biologically related (Huy et al., 2019). 
Therefore, component models are best fitted simultaneous-
ly with the model for AGB as a system of equations using 
Seemingly Unrelated Regression (SUR) (Parresol, 2001). 
SUR accounts for the cross-equation correlation and helps 
reduce the variability of the parameters and increase the re-

Figure 1. Location of the study in the tropical Central 
Highlands of Vietnam.

liability of the biomass estimation of tree parts and totals 
(Poudel & Temesgen, 2016; Kralicek et al., 2017; Huy et 
al., 2019; Trautenmüller et al., 2021). The relationship be-
tween biomass components and common dendrometric va-
riables (diameter at breast height (D), and tree height (H)) is 
nonlinear and the residuals are heteroscedastic. Therefore, 
applying the weighted nonlinear seemingly unrelated re-
gression (WNSUR) method can further improve the relia-
bility of the estimates of AGB and its components (Trauten-
müller et al., 2021).

The objectives of this study were to develop and cross-
-validate the simultaneous modeling systems for estimating 
components and total tree biomass and carbon of L. gluti-
nosa in an agroforestry model with cassava. We hypothe-
sized that simultaneous estimation of these attributes using 
WNSUR provides improved and reliable biomass and car-
bon estimates compared to independently fitted models. 
We used the dataset derived from a technical report (Huy, 
2009a) and applied it to a new methodology to improve bio-
mass and carbon estimates for this studied species in the 
agroforestry model.

Material and methods

Study sites and agroforestry model studied

The study area is in the Central Highlands of Vietnam 
(Fig. 1). The average annual temperature is 21.60C and 
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Figure 2. Tree age distributions in the 22 sampled plots (left) and 
destructively sampled trees (right).

Table 1. Summary statistics of forest stand factors in the studied agroforestry model, based 
on 22 sample plots located in the agroforestry model.

Variables[1] Min. Mean Max. Std.

BA (m2 ha-1) 0.40 3.03 7.33 2.17

Dg (cm) 1.0 4.4 7.0 1.9

Hg (m) 1.6 3.4 5.4 1.1

Origin of the plant 
(1, from seed; 2, 
from the shoot)

1.0 1.3 2.0 0.5

Nplant (no. of plants 
ha-1)

500 1322 1967 400

Nstem (no. of stems 
ha-1)

500 2268 5900 1299

Nstemplant (no. 
of stems per plant 
averaged)

1.0 1.7 3.4 0.9

Number of cycles 1.0 1.4 3.0 0.6
[1] BA: basal area per hectare; Dg: quadratic mean diameter; Hg: height of the tree with Dg.

the average annual rainfall is 2,213 mm (Hydro-meteor-
ological Station in the Central Highlands). Located at an 
altitude of 400-800 m above sea level, the soil types in the 
study area include red-brown soil on basalt, gray soil, and 
red-yellow soil on granite.

The studied agroforestry model includes the native mul-
ti-purpose tree species L. glutinosa combined with cassa-
va. L. glutinosa is combined in different proportions with 
cassava ranging from 50% to 80% of the agroforestry area 
and is managed in a 6-7 year rotation cycle. Planting density 
(Nplant) ranged from 500 to 1967 plants ha-1. L. glutinosa 
was grown from seeds collected at local tropical evergreen 
broadleaf forests in the first rotation, and in the following 
cycles, regenerated stems from coppice were used. The av-
erage number of stems plant-1 (Nstemplant) in the second 
and third cycles ranged from 1 to 3.4. The number of stems 
ha-1 (Nstem) ranged from 500 to 5900. After the third cycle, 
L. glutinosa was replanted from seeds (Table 1).

Sampling design, data collection, and variable 
calculation

Twenty-two 300-m2 circular plots were sampled 
covering a full range of ages (A) (1-7 years), a range of 
planting density, and a range of rotation cycles 1-3 in 
the agroforestry model. For all trees in the sample plots 
D (cm), H (m), and the Nstemplant were recorded. In 
each sample plot, one selected tree having the same D 
as the quadratic mean diameter (Dg), was destructively 
sampled to obtain a tree dry biomass/carbon dataset and 
its components. Age distributions of all sampled plots and 
destructively sampled trees are shown in Fig. 2. Before 
felling the sample tree, D, H, and crown diameter (CD, 
m) in two cardinal directions, North-South and East-West, 
and the sampled tree’s age (A, year) were recorded. The 
crown area of the trees sampled (CA, m2) was calculated 
by the formula  , where CD (the average 
crown diameter) was obtained from two cardinal direction 
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measurements. After felling, tree heights were remeasured 
and fresh weights of the stem, branches, leaves, and 
bark were recorded. The four sampled tree components 
including stem, bark, branches and leaves were separated 
and weighed for fresh biomass in the field using a scale 
with a precision of 0.01 kg. Stem wood and bark samples 
were obtained from the base, middle, and top sections of 
the sampled tree. Sampled branches included small and 
large branches, and the sampled leaves on these branches. 
For four sampled tree components, a total of 88 samples 
were collected for the analysis; 100-300 g of each sample 

was weighed for fresh biomass on site using an electronic 
scale with a precision of 0.01 g.

The sample materials were dried at 105°C until a con-
stant weight was attained. This provided the average fresh-
to-dry mass ratio for all tree components to calculate the 
respective dry biomass – stem (Bst, kg tree-1), branches 
(Bbr, kg tree-1), leaves (Ble, kg tree-1), and bark (Bba, kg 
tree-1). Total tree aboveground biomass was computed as 
the sum of component biomass i.e., AGB = Bst + Bbr + 
Ble + Bba (kg tree-1). The samples were analyzed after 
drying and the percentage of carbon was estimated by the 

Table 2. Summary statistics of tree variables, based on a dataset of n = 22 destructively 
sampled trees in 22 sample plots located in the agroforestry model.

Variables[1] Min. Mean Max. Std.

D (cm) 1.0 4.4 7.0 1.9
H (m) 1.6 3.4 5.4 1.1
A (year) 1.0 3.9 7.0 1.7
CA (m2 stem-1) 0.79 2.53 7.07 1.28
Bst (kg tree-1) 0.132 1.765 4.479 1.376
Bbr (kg tree-1) 0.040 0.697 1.656 0.472
Ble (kg tree-1) 0.080 0.832 1.885 0.501
Bba (kg tree-1) 0.031 0.548 1.356 0.428
AGB (kg tree-1) 0.283 3.844 8.703 2.687
Cst (kg tree-1) 0.060 0.846 2.156 0.653
Cbr (kg tree-1) 0.019 0.331 0.793 0.224
Cle (kg tree-1) 0.037 0.405 0.917 0.243
Cba (kg tree-1) 0.014 0.250 0.613 0.195
AGC (kg tree-1) 0.130 1.834 4.187 1.275

[1] Bst/Cst, Bbr/Cbr, Ble/Cle, Bba/Cba and AGB/AGC are biomass/carbon of stem, branches, leaves, bark 
and total tree aboveground biomass/carbon, respectively. A: age of the plant. CA: crown area. D: diame-
ter at breast height. H: height of the sampled tree.

Figure 3. Scatter plot of biomass and carbon vs. D for tree stem (Bst/Cst, 
kg), branches (Bbr/Cbr, kg), leaves (Ble/Cle, kg), bark (Bba/Cba, kg), and 
total tree aboveground biomass/carbon (AGB/AGC, kg).
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Walkley & Black method (1934) and the carbon content of 
tree stem (Cst, kg tree-1), branches (Cbr, kg tree-1), leaves 
(Cle, kg tree-1), bark (Cba, kg tree-1), and the total tree 
aboveground carbon (AGC = Cst + Cbr + Cle + Cba, kg 
tree-1) was calculated. Table 2 shows the summary statis-
tics for each tree predictor and the destructively sampled 
tree response variables.

Statistical analysis

In this study, we compared two methods to fit systems 
of equations for AGB/AGC and their components: weight-
ed nonlinear least-squares (WNLS) and weighted nonlin-
ear seemingly unrelated regression (WNSUR) fit by the 
generalized least squares method.

— Relationship among tree biomass-carbon com-
ponents and selection of predictors: The factor analysis 
method was performed to examine the relationship among 
the tree biomass and carbon components and select their 
predictors from D, H, A, and CA (Kim & Mueller, 1978; 
DeCoster, 1998). This method supports both principal 
components and classical factor analysis, which produc-
es a linear combination of multiple quantitative variables 
and explains the largest percentage variation among those 
variables. The values of the variables were standardized 
by subtracting their means and dividing by their standard 
deviations. 

— Model calibration – Independent fit: Fig. 3 shows 
that the relationship between tree biomass-carbon com-
ponents, AGB and AGC vs. D conforms to the power law 
that was used in the study. Preliminary analysis showed 
that power models fit by the nonlinear method produced 
higher reliability than the log-linear model. This is con-
sistent with previous studies (Huy et al., 2016a, 2016b, 
2016c). Therefore, we used the nonlinear method to fit 
biomass-carbon modeling systems, and the heterosce-
dasticity in residuals was accounted for by using appro-
priate weighting (Davidian & Giltinan, 1995; Picard et 
al., 2012; Huy et al., 2016a, 2016b, 2016c, 2019). The 
WNLS models were fitted using nls function in the statis-
tical software R (R Core Team, 2021). The model forms 
used were as follows:

(1)

(2)

where Yi is the Bst/Cst, Bbr/Cbr, Ble/Cle, Bba/Cba or 
AGB/AGC in kg for the ith sampled tree; a and b are the 
parameters of the model; Xi is the predictor(s) selected by 
factor analysis such as a combination of D (cm), H (m), A 
(year), D2H for the ith sampled tree; and εi is the random 
error associated with the ith sampled tree. The weighting 
variable is 1/Dδ or 1/(D2H)δ and δ is selected in a range of   
±2 (Picard et al., 2012).

— Model calibration – Simultaneous estimation: Inde-
pendently fitted component models do not ensure that the 
AGB/AGC calculated as the sum of predicted tree compo-
nent models is the same as the AGB/AGC estimated from 
independently developed AGB/AGC models (Sanquetta 
et al., 2015; Affleck & Dieguez-Aranda, 2016; Poudel & 
Temesgen, 2016; Gonzalez-Benecke et al., 2018; Huy et 
al., 2019; Trautenmüller et al., 2021). The SUR can solve 
that limitation by allowing simultaneous estimation of the 
tree biomass or carbon component and AGB/AGC (Par-
resol, 2001). Additionally, different weighting factors can 
be used for each equation to account for heteroscedastici-
ty. The WNSUR models were fitted using SAS procedure 
Proc Model (SAS Inst., 2014) with the generalized least 
squares method. The modeling systems for the component 
and total tree biomass and carbon had the following gen-
eral forms:

(3)

(4)

(5)

(6)

(7)

where Bst/Cst, Bbr/Cbr, Ble/Cle, Bba/Cba and AGB/AGC 
are biomass/carbon of stem, branches, leaves, bark, and 
total in kg, respectively; ai and bi are parameters of the 
power model i (i = 1, 2, 3, 4 for the stem, branches, leaves, 
and bark respectively); Xij is the predictor variables (D, H, 
D2HWWD) for the ith equation and the jth predictor; and εi 

is the residuals for the ith equation (i = 1, 2, 3, 4, 5). The 
weighting variable is 1/Dδ or 1/(D2H)δ and δ is selected in 
a range of ±2 (Picard et al., 2012).

Cross-validation

Leave-one-out cross validation (LOOCV) is a special 
case of K-fold cross-validation, where K is set to the 
number of samples in the dataset. LOOCV has the 
maximum computational cost. It requires that one model 
be created and evaluated for each sample in the dataset 
(Cheng et al., 2017). LOOCV was applied for the cross-
validation of modeling systems. The dataset was split 
into two parts with n-1 samples for model development 
and one for cross-validation. The process was repeated 
for all the observations, and the error statistics were 
computed at each iteration and averaged over the number 
of iterations. 

The Akaike Information Criterion (AIC) (Akaike, 
1973) compares and selects the best model. The adjusted 
R2 describes the variability in the dependent variable ex-
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plained by the set of predictors accounting for the number 
of predictors used in the model, whereas the diagnostic 
plots are used to examine residuals for any departure from 
model assumptions. The lower the AIC and the closer the 
adj. R2 is to 1, the better the model. At the same time, 
cross-validation errors based on each sample such as 
bias (%), root mean square error (RMSE, kg tree-1), and 
mean absolute percent error (MAPE, %) were used and 
averaged over the n realizations of LOOCV. The models 
with the smallest values of cross-validation errors were 
preferred.

(8)

(9)

(10)

where n is the number of realizations (number of samples); 
and yi and ŷi are observed and predicted Bst/Cst, Bbr/Cbr, 
Ble/Cle, Bba/Cba and AGB/AGC for the ith realization, re-
spectively. 

Bias and MAPE statistics estimated using Eqs. (8) and 
(10) have been the most widely used by many authors 
(e.g., Chave et al., 2005; Basuki et al., 2009; Huy et al., 
2019, 2022). In some cases, the errors based on Eqs. (8) 
and (10) tend to be biased on negative errors, yi < ŷi than 
in positive errors; therefore, the average systematic error 
(ASE) and the mean percent standard error (MPSE) were 
used (Zeng et al., 2017). The only difference among these 
metrics is the denominator; that is, instead of the ob-
served value, the predicted value of the response is used 
in the denominator (Zeng et al., 2017; Huy et al., 2022). 

Results 

Relationships among tree biomass, carbon 
components, and predictors 

Factor analysis was carried out with two groups of eight 
variables each. Group 1 included tree biomass components 
(Bst, Bbr, Ble, and Bba) and tree-level predictors (D, H, A, 
and CA) and group 2 included tree carbon components (Cst, 
Cbr, Cle and Cba) and tree predictors (D, H, A and CA). Fac-
tor analysis provided a small number of factors that account 
for most of the variability in the eight variables and support-
ed an examination of the relationship between biomass and 
carbon components of trees. In both groups, two factors were 
extracted since two factors had eigenvalues greater than or 
equal to 1.0. Together, they accounted for 89.24% (group 1) 
and 89.30% (group 2) of the variability in the original data.  

According to the results of the factor analysis, there 
were strong relationships between tree biomass and car-
bon components and tree predictors (D, H, A). They were 
placed close together in Fig. 4. They had a high coeffi-
cient (over 0.83) while CA had the lowest coefficient (be-
low 0.30), which was shown in the first common factor 
equations (Factor 1) below. CA was excluded from further 
analysis because of its negligible influence on the biomass 
and carbon of the tree components.

The first common factor equations for tree biomass/car-
bon components are:

Factor 1 = 0.96088×Bst + 0.95130×Bba + 0.93313×Ble 
+ 0.92899×Bbr + 0.82619×A + 0.97296×D + 

0.92957×H + 0.27349×CA
(11)

Factor 1 = 0.96183×Cst + 0.953593×Cba + 
0.939325×Cle + 0.927541×Cbr + 0.825706×A + 

0.972641×D + 0.928428×H + 0.272406×CA
(12)

Figure 4. The plot of Factor 1 vs. Factor 2 of the Factor Analysis. Left: Tree biomass components 
(Bst, Bbr, Ble and Bba) along with tree predictors (D, H, A, and CA). Right: Tree carbon sequestration 
components (Cst, Cbr, Cle and Cba) and tree predictors (D, H, A, and CA). The factor plots show 
the location of each variable; the variables furthest from the reference lines at 0 make the largest 
contribution to the factors, and the variables located close to each other are closely related.
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Independently fit models

The results for selecting independent models using the 
WNLS method for tree biomass and carbon components 
and AGB/AGC vs. different combinations of variables D, 
H, and D2H by LOOCV are presented in Tables 3 and 4. 
We also observed that tree age (A) was marginally signifi-
cant for all components and total (p > 0.05). The selected 
models from the independent fitting of component and to-
tal AGB and AGC were as follows:

Bst/Cst = a × (D2H)b (13)

Bbr/Cbr = a × Db (14)

Ble/Cle = a × Db (15)

Bba/Cba = a × (D2H)b (16)

AGB/AGC= a × (D2H)b (17)

The plots of observed vs. fitted values and weighted re-
siduals vs. the fitted values (Fig. 5) depict a good model 

fit for independent fitting of component and total biomass. 
The results also showed that the model selection retained 
identical predictors or a combination of predictors when 
independent tree biomass and carbon components models 
were fitted (Table 3 and Table 4).

The carbon fraction of the tree species studied 

The results of calculating the average carbon fraction 
(CF = Carbon/Biomass weight) for tree biomass compo-
nents and total and the variation within the 95% confidence 
range are shown in the box plot in Fig. 6. 

Simultaneous modeling

The tree age was excluded from further analysis based 
on the results of independently fit models. Sixteen WN-
SUR equation systems were developed using D, H, and 
their combinations as predictors to predict AGB, AGC, and 
their components (Tables S1 and S2 [suppl]). Unlike the 
independent model fit, the results showed that the model 

Figure 5. Plots of selected weighted non-linear models of tree biomass components Bst, Bbr, Ble 
and Bba (biomass of stem, branches, leaves, and bark, respectively) and total tree aboveground 
biomass (AGB) developed separately: Right: Fitted vs. Observed values; Left: Weighted residuals 
vs. Fitted values.
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selection retained the different predictors or a combination 
of predictors when these models were fit simultaneously. 
Based on the errors statistics of LOOCV, we found two 
optimal combinations of tree predictors for simultaneous 
modeling systems for tree biomass and carbon components 
and the totals are as follows:

Bst = a1×Db1 (18)

Bbr = a2×Db2 (19)

Ble = a3×Db3 (20)

Bba = a4×(D2H)b4 (21)

AGB = Bst + Bbr + Ble + Bba= a1×Db1 + a2×Db2 + 
a3×Db3 + a4×(D2H)b4

(22)

Cst = a1×(D2H)b1 (23)

Cbr = a2×Db2 (24)

Table 3. Leave-One-Out Cross Validations (LOOCV) to select separate weighted nonlinear equations along with 
different combinations of tree predictor(s) for biomass components including Bst, Bbr, Ble and Bba (biomass of stem, 
branches, leaves and bark, respectively) and total tree aboveground biomass (AGB).

Model form Weight 
variable AIC Adj. R2 Bias (%) RMSE (kg) MAPE (%)

Bst = a × Db 1/D 12.9 0.925 9.0 0.293 22.9
Bst = a × Db × Hc 1/D 3.0 0.956 5.9 0.269 19.3
Bst = a × (D2H)b 1/(D2H)0.2 3.8 0.958 6.4 0.238 18.2
Bst = a × Db × Ac* 1/D 14.1 0.923 4.0 0.306 23.3
Bst = a × Db × Hc × Ad* 1/D 4.7 0.953 5.4 0.286 19.7
Bst = a × (D2H)b×Ac* 1/(D2H) 1.2 0.945 -1.7 0.245 19.4
Bbr = a × Db 1/D -14.1 0.842 -8.3 0.141 29.7
Bbr = a × Db × Hc* 1/D -15.2 0.867 -6.1 0.143 30.0
Bbr = a × (D2H)b 1/(D2H) -10.7 0.767 -13.9 0.161 34.5
Bbr = a × Db × Ac* 1/D -12.2 0.832 -8.8 0.151 30.9
Bbr = a × Db × Hc* × Ad* 1/D -13.3 0.859 -6.5 0.150 31.1
Bbr = a × (D2H)b×Ac* 1/(D2H) -8.8 0.747 -14.7 0.173 36.2
Ble = a × Db 1/Dδ 1.1 0.732 -11.4 0.214 34.5
Ble = a × Db × Hc* 1/D 2.5 0.721 -11.5 0.240 37.5
Ble = a × (D2H)b 1/(D2H) 8.9 0.702 -18.1 0.213 39.6
Ble = a × Db × Ac* 1/D 2.9 0.720 -11.4 0.229 36.0
Ble = a × Db × Hc* × Ad* 1/D 4.3 0.710 -12.1 0.259 39.6
Ble = a × (D2H)b×Ac* 1/(D2H) 10.5 0.668 -18.7 0.234 42.0
Bba = a × Db 1/D -15.8 0.797 -7.7 0.148 30.0
Bba = a × Db × Hc* 1/D -18.9 0.837 -7.3 0.124 24.0
Bba= a × (D2H)b 1/(D2H) -29.9 0.844 -6.4 0.119 24.0
Bba = a × Db × Ac 1/D -20.1 0.840 -3.9 0.135 29.9
Bba = a × Db × Hc × Ad 1/D -26.9 0.897 -2.1 0.125 27.1
Bba = a × (D2H)b×Ac 1/(D2H) -33.4 0.889 -4.1 0.115 26.1
AGB = a × Db 1/D 43.8 0.925 1.3 0.556 20.9
AGB = a × Db × Hc* 1/D 42.2 0.934 1.8 0.640 21.3
AGB= a × (D2H)b 1/(D2H)0.2 42.7 0.934 1.8 0.589 20.1
AGB = a × Db × Ac* 1/D 45.6 0.922 1.5 0.590 21.6
AGB = a × Db × Hc × Ad* 1/D 43.8 0.932 2.0 0.695 22.7
AGB = a × (D2H)b×Ac* 1/(D2H) 45.9 0.912 -5.2 0.684 23.0

In LOOCV, the dataset was split into n-1 samples used for developing models, the remaining one sample used for validation, calcu-
lation of AIC, Adj. R2, Bias, RMSE, MAPE; finally, all of those statistics averaged over n realizations. *: parameter with p > 0.05. In 
bold, models selected based on LOOCV statistics and diagnostic plots.
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Cle = a3×(D2H)b3 (25)

Cba = a4×(D2H)b4 (26)

AGC = Cst + Cbr + Cle + Cba = a1×(D2H)b1 + 
a2×Db2 + a3×(D2H)b3 + a4×(D2H)b4

(27)

The parameters of the two selected simultaneous mode-
ling systems that were fit by the WNSUR method using the 
entire dataset are presented in Table 5. In addition to the 
simplicity of application, since measuring tree H is costly, 
two modeling systems for simultaneously predicting tree 
biomass and carbon were created with only D (Table 6).

Table 4. Leave-One-Out Cross Validations (LOOCV) to select separate weighted nonlinear equations along with dif-
ferent combinations of tree predictor/s for carbon components including Cst, Cbr, Cle and Cba (carbon sequestration 
of stem, branches, leaves and bark, respectively) and total tree aboveground carbon (AGC).

Model form Weight 
variable AIC Adj. R2 Bias (%) RMSE (kg) MAPE (%)

Cst = a × Db 1/D -18.6 0.924 3.5 0.135 22.2

Cst = a × Db × Hc 1/D -26.2 0.950 4.9 0.134 19.4

Cst = a × (D2H)b 1/(D2H) -30.1 0.946 -1.6 0.118 19.6

Cst = a × Db × Ac* 1/D -17.7 0.925 3.0 0.146 22.8

Cst = a × Db × Hc × Ad* 1/D -24.9 0.949 4.3 0.142 19.8

Cst = a × (D2H)b×Ac* 1/(D2H) -29.4 0.943 -1.8 0.121 19.2

Cbr = a × Db 1/D -44.1 0.830 -9.0 0.067 29.8

Cbr = a × Db × Hc* 1/D -45.3 0.859 -6.7 0.069 30.6

Cbr = a × (D2H)b 1/(D2H) -40.9 0.752 -14.2 0.077 34.4

Cbr = a × Db × Ac* 1/D -42.2 0.819 -9.5 0.072 31.2

Cbr = a × Db × Hc* × Ad* 1/D -43.5 0.850 -7.1 0.074 31.9

Cbr = a × (D2H)b×Ac* 1/(D2H) -38.9 0.735 -15.1 0.083 36.4

Cle = a × Db 1/D -29.9 0.741 -10.9 0.100 33.9

Cle = a × Db × Hc* 1/D -28.5 0.735 -11.3 0.113 37.2

Cle = a × (D2H)b 1/(D2H) -21.6 0.715 -18.2 0.101 39.6

Cle = a × Db × Ac* 1/D -28.0 0.732 -10.8 0.108 35.5

Cle = a × Db × Hc* × Ad* 1/D -26.8 0.726 -11.8 0.123 39.5

Cle = a × (D2H)b×Ac* 1/(D2H) -19.9 0.685 -18.9 0.112 42.4

Cba = a × Db 1/D -48.9 0.798 -7.5 0.066 29.0

Cba = a × Db × Hc* 1/D -51.7 0.834 -7.0 0.056 23.2

Cba= a × (D2H)b 1/(D2H) -62.3 0.842 -6.3 0.053 22.9

Cba = a × Db × Ac 1/D -52.1 0.831 -4.2 0.062 29.1

Cba = a × Db × Hc × Ad 1/D -57.4 0.882 -2.7 0.060 27.0

Cba = a × (D2H)b×Ac 1/(D2H) -65.5 0.878 -4.3 0.054 26.0

AGC = a × Db 1/D 13.2 0.922 0.8 0.273 20.8

AGC = a × Db × Hc* 1/D 12.2 0.929 1.3 0.316 21.2

AGC= a × (D2H)b 1/(D2H)0.2 13.0 0.929 0.9 0.292 20.1

AGC = a × Db × Ac* 1/D 15.0 0.918 0.9 0.293 21.7

AGC = a × Db × Hc* × Ad* 1/D 14.0 0.926 1.4 0.344 22.6

AGC = a × (D2H)b×Ac* 1/(D2H) 15.6 0.910 -5.4 0.331 23.5

In LOOCV, the dataset was split into n-1 samples used for developing models, the remaining one sample used for validation, calcu-
lation of AIC, Adj. R2 Bias, RMSE, MAPE; finally, all of those statistics averaged over n realizations. *: Parameter with p > 0.05. In 
bold, models selected based on LOOCV statistics and diagnostic plots.



Forest Systems April 2023 ● Volume 32 ● Issue 1 ● e006

10 Bao Huy, Nguyen Q. Khiem, Nguyen Q. Truong, Krishna P. Poudel and Hailemariam Temesgen

Both WNLS and WNSUR addressed the issue of heter-
oscedasticity of the residuals. The WNLS residuals fluctu-
ated uniformly along with the fitted values of the models, 
whereas the WNSUR model reduced the variability of the 
residuals significantly compared to the WNLS model (Fig. 
7). The result of comparison of LOOCV statistics between 
two methods of independent WNLS and simultaneous 
WNSUR to fit selected AGB and AGC models is shown 
in Table 7.

Discussion

Predictors and the variation of tree biomass-
carbon components 

Tree age (A) was insignificant in tree parts and total 
biomass and carbon models (Tables 3 and 4). Therefore, 
variables D and H (Dutca et al., 2018) may be sufficient 
to describe the variability in biomass and carbon in Lit-

Figure 6. Box plot of carbon fraction (CF) by total tree aboveground biomass 
(AGB) and its components. Points and numbers within the boxplots represent 
the means of CF for the tree components and the total. Sample size n = 22.

Figure 7. Plots of fitted vs. observed AGC (left) and weighted 
residuals vs. fitted AGC (right) for the model fitted with the 
entire dataset. Comparison of two methods of independent 
weighted non-linear (WNLS) and simultaneous weighted non-
linear SUR (WNSUR).
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sea trees planted. Wood density (WD) is commonly used 
in mixed-species biomass models (e.g., Chave et al., 2005; 
Basuki et al., 2009; Chave et al., 2014; Huy et al., 2019). 
However, as WD reflects the differences in biomass accu-
mulation among species, it may not be a critical predictor 
for the species-specific biomass models.

The biomass and carbon in branches (Bbr/Cbr), leaves 
(Ble/Cle), and bark (Bba/Cba) of the tree have greater vari-
ation than the biomass and carbon in the stem (Bst/Cst) and 
total (AGB/AGC). When the models for estimating AGC 
and its carbon components were developed separately, the 
errors in the selected models for stem carbon (Cst) and 
total (AGC) were the smallest with MAPE = 19.6-20.1% 
(Table 4). Meanwhile, the errors of the selected branches 
and leaves carbon models were much higher, with MAPE 
= 29.8-33.9% (Table 4). On the other hand, with the chosen 
simultaneous modeling system, the errors in the models of 
stem carbon (Cst), and total (AGC) were the smallest, with 
MAPE = 15.0-16.2% (Table S2), and the errors in the mod-
els of branches, leaves, and bark carbon were much higher, 
MAPE = 25.1-34.8% (Table S2). This may be because of 
the high variability in the stand density (Table 1) of the 
agroforestry model studied here. As the density is low, 
branches and foliage grow stronger and wider, so there are 

large variations in Bbr/Cbr and Ble/Cle, making these fit-
ted models have larger errors than other models like Bst/
Cst and AGB/AGC.

Independent vs. simultaneous model fit

Simultaneous modeling systems fit by WNSUR re-
duced MAPE by 1.3% - 3.9% of AGB and AGC estimates 
compared to independent models fit by WNLS (Table 
7). This result is consistent with Huy et al. (2019) and 
Trautenmüller et al. (2021). As expected, the sum of the 
biomass of the components predicted with independent-
ly fit component models differed from the estimates ob-
tained from the AGB/AGC models. Using non-additive 
independent biomass models of tree components and 
total AGB produces biologically inconsistent estimates 
that scale up to a large area, which affects the final total 
biomass estimated. Simultaneous fitting leads to higher 
efficiency than independent fitting because the variance 
and covariance information of the tree biomass- carbon 
components and total are included in the model (Parresol, 
2001; Poudel & Temesgen, 2016; Trautenmüller et al., 
2021). 

Table 5. Model equations and estimated parameters of the selected modeling systems for simultaneous 
estimation of AGB/AGC and its components using the WNSUR method (based on the entire dataset).

Prediction of tree AGB or AGC 
and its components Parameters Estimate ± Std. 

Error RMSE (kg tree-1) Adj. R2

AGB and its components

Bst = a1×Db1 a1 0.03203 ± 0.01450 0.349 0.936
b1 2.50566 ± 0.24550

Bbr = a2×Db2 a2 0.04571 ± 0.02050 0.173 0.865
b2 1.75896 ± 0.24880

Ble = a3×Db3 a3 0.07274 ± 0.03410 0.238 0.774
b3 1.57179 ± 0.25980

Bba = a4×(D2H)b4 a4 0.01545 ± 0.00766 0.156 0.867
b4 0.80636 ± 0.09310

AGB = Bst + Bbr + Ble +Bba 0.692 0.934

AGC and its components

Cst = a1×(D2H)b1 a1 0.01399 ± 0.00367 0.134 0.956
b1 0.91022 ± 0.05050

Cbr = a2×Db2 a2 0.01514 ± 0.00685 0.087 0.847
b2 1.97080 ± 0.24890

Cle = a3×(D2H)b3 a3 0.05770 ± 0.02160 0.113 0.782
b3 0.46021 ± 0.04530

Cba = a4×(D2H)b4 a4 0.00702 ± 0.00342 0.071 0.866
b4 0.80219 ± 0.09160

AGC = Cst + Cbr + Cle +Cba 0.328 0.934
Bst/Cst, Bbr/Cbr, Ble/Cle, Bba/Cba and AGB/AGC are biomass/carbon of stem, branches, leaves, bark and total 
aboveground biomass/carbon, respectively. All parameters with p < 0.05.
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Given the above observations along with Fig. 7, a pro-
cedure using a simultaneous and weighted modeling sys-
tem fit by WNSUR is recommended to generate native tree 
biomass-carbon models and their components. This rec-
ommendation is consistent with the comments of Huy et 
al. (2019) and Trautenmüller et al. (2021).

Carbon sequestration in agroforestry model

The agroforestry model aims to create economic, social, 
and ecological efficiency. The design and implementation 
of an agroforestry model that balances economic and en-
vironmental factors is always the primary concern, but is 
not easy to study. Using the selected modeling systems fit 
by WNSUR to simultaneously predict the biomass-carbon 
sequestration of L. glutinosa including Bba, AGB and AGC 
associated with different densities of Nplant and Nstem to 
calculate total stem bark biomass ha-1, total AGB ha-1, total 
AGC ha-1 and total CO2 equivalent absorbed ha-1 for each 
agroforestry model. 

As a result, a popular agroforestry model with a density 
of 1633 Nplant and 1960 Nstem of L. glutinosa, uses 65% 
of the space and the remaining 35% of the space to grow 
cassava until the end of the 6-7 year rotation cycle of L. 
glutinosa, the most valuable component of L. glutinosa is 
the stem bark biomass, which reached 4.7 tons ha-1 and the 
total AGB, total AGC, and total CO2 equivalent accumula-
tion reached 15.0 tons ha-1 (2.5 tons ha-1 year-1), 7.1 tons ha-1 
(1.2 tons ha-1 year-1) and 26.0 tons ha-1 (4.3 tons ha-1 year-1), 
respectively. In Austrian mountain agroecosystems, carbon 
is sequestered in perennial biomass by up to 3.1 tons ha-1 
year-1 (Bertsch-Hoermann et al., 2021), the potential of agro-
forestry systems in tropical India to accumulate carbon is 
estimated at 0.3-15.2 tons ha-1 year-1 (Dhyani et al., 2020). 
In comparison, the carbon accumulation in the agroforestry 
model studied here is lower than that of the agroforestry sys-
tems in Europe and averages in the Asian region. 

Most of the published models have been used to predict 
tree biomass and apply the default CF of IPCC (2006) for 
plants is 0.47 to carbon conversion. The CF of the stem 
bark observed in this study was slightly lower (CF = 0.46), 

Table 6. Model equations and estimated parameters for a sole predictor of the diameter at breast height 
(D) for the simultaneous estimation of AGB/AGC and its components using the WNSUR method (based 
on the entire dataset).

Prediction of tree AGB or AGC 
and its components Parameters Estimate ± Std. 

Error RMSE (kg tree-1) Adj. R2

AGB and its components

Bst = a1×Db1 a1 0.04884  ±  0.01690 0.351 0.935

b1 2.27942  ±  0.18910

Bbr = a2×Db2 a2 0.05699  ±  0.02530 0.175 0.863

b2 1.64333  ±  0.24450

Ble = a3×Db3 a3 0.11233 ±  0.04200 0.240 0.772

b3 1.34080  ±  0.20790

Bba = a4×Db4 a4 0.02612  ±  0.01230 0.178 0.827

b4 1.96718  ±  0.26420

AGB = Bst + Bbr + Ble +Bba 0.729 0.916

AGC and its components

Cst = a1×Db1 a1 0.02224  ±  0.00540 0.165 0.935

b1 2.29456  ±  0.13520

Cbr = a2×Db2 a2 0.02892  ±  0.01330 0.086 0.853

b2 1.59982  ±  0.25500

Cle = a3×Db3 a3 0.04956  ±  0.01770 0.113 0.782

b3 1.38225  ±  0.20110

Cba = a4×Db4 a4 0.01286  ±  0.00613 0.081 0.826

b4 1.91162  ±  0.26470

AGC = Cst + Cbr + Cle +Cba 0.352 0.923

Bst/Cst, Bbr/Cbr, Ble/Cle, Bba/Cba, and AGB/AGC are biomass/carbon of stem, branches, leaves, bark, and total 
aboveground biomass/carbon, respectively. All parameters with p < 0.05.
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but the CF of the total and other components was high-
er (CF = 0.48 for branches and total; CF=0.49 for leaves) 
(Fig. 6). Comparison with this result showed differences in 
CF among tree parts, therefore, using the same default CF 
= 0.47 for all parts of the tree could result in a significant 
error in the conversion. Therefore, the selected modeling 
system in this study will provide greater confidence in pre-
dicting the tree component carbon sequestration than using 
the tree biomass models and the IPCC’s CF.

Conclusions
The leave-one-out cross-validation results showed that 

the simultaneous WNSUR modeling systems of four tree 
components and total biomass and carbon of L. glutino-
sa provide better results than fitting independent weighted 
nonlinear models.

The selected simultaneous modeling systems for bio-
mass and carbon were Eqs. (22) and (27), respectively. In 
the popular agroforestry model with 65% L. glutinosa to 
35% cassava mixture, L. glutinosa trees reached stem bark 
biomass (the most valuable component) at 4.7 tons ha-1 and 
CO2 accumulation at 26.0 tons ha-1 at the end of the 6-7-
year rotation cycle. 

A much larger sample would be necessary to obtain 
compatible and additive equations using the methodology 
proposed in this work, which would improve the existing 
models in terms of the range of applications and robustness 
of estimates.
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