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• Innovative developed DLAMs for simul-
taneously predicting stand-level AGB
and BGB.

• DLAMs substantially enhanced the reli-
ability of simultaneously predicting AGB
and BGB.

• DLAMs are recognized as the optimal
approach compared to WNSUR and
MARS methods.

• A well-designed multi-output deep neu-
ral network is key to finding the best
DLAMs.
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A B S T R A C T

Accurate and cost-effective prediction of aboveground biomass (AGB), belowground biomass (BGB), and the total
(ABGB) at stand-level within tropical forests is crucial for effective forest ecological management and the pro-
vision of forest ecosystem services. Although there has been research on simultaneously fitting biomass equations
for tree components, rather few studies focus on simultaneously predicting AGB and BGB at stand-level while
maintaining additivity. We developed innovative Deep Learning Additive Models (DLAMs) for the simultaneous
predictions of stand-level AGB, BGB, and ABGB integrating forest stand, ecological, and environmental factors as
predictive covariates and compared them with conventional weighted nonlinear seemingly unrelated regression
(WNSUR) and multivariate adaptive regression splines (MARS). Data for this study were collected from 121 plots
distributed in two tropical forest types (dipterocarp and evergreen broadleaf) across five ecological regions of
Vietnam, capturing three response variables (AGB, BGB, and ABGB), and 12 predictors. Factor analysis for mixed
data was employed to identify the optimal covariates. Cross-validation results demonstrated that DLAMs
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substantially enhanced the reliability of simultaneous predictions of forest biomass components compared to the
conventional WNSUR and MARS methods. The optimal DLAMs included seven predictive covariates (stand basal
area (G), stand volume (V), mean annual temperature (T), elevation (EL), forest type (FT), average height (Hg),
and soil group (SG)). They had mean absolute percent errors (MAPEs) of 6.3 %, 4.3 %, and 5.3 % for the
simultaneous prediction of AGB, BGB, and ABGB, respectively. The MAPEs for the DLAMs approach were sub-
stantially lower than those for the WNSUR alternative by 2.9 %, 14.0 %, and 2.4 %, and lower than those for the
MARS method by 4.3 %, 11.6 %, and 4.1 % for predicting AGB, BGB, and ABGB simultaneously, respectively.
Conducting experiments in designing multi-input multi-output deep neural networks was essential for signifi-
cantly improving the reliability of the simultaneous predictions from the DLAMs.

1. Introduction

Forest biomass offers important ecosystem services, including
maintaining a stable environment, ecosystem, and climate (Pravalie
et al. 2023). While the aboveground biomass carbon pool is the central
and most prominent carbon reservoir within the tropical forest

ecosystem, the belowground biomass carbon pool plays a crucial role in
the carbon cycle by facilitating the transfer and storage of carbon within
the soil (Vashum and Jayakumar 2012). Therefore, accurately and
simultaneously estimating stand-level above- and belowground
biomass, including their total (AGB, BGB, and ABGB = AGB + BGB,
respectively), while minimizing resource requirements, is paramount for

Fig. 1. Spatial distribution of sample plots in Dry Dipterocarp Forest (DDF) and Evergreen Broadleaf Forest (EBLF) across five ecoregions of Vietnam.
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effective forest ecological management. Moreover, it has significant
implications for carbon credit programs such as Reducing Emissions
from Deforestation and Forest Degradation (REDD+) (Calderon-Balca-
zar et al. 2023) and initiatives promoting forest environmental services
such as Carbon Payment for Forest Environmental Services (C-PFES)
(USAID 2018). Therefore, there is a need for the development, cross-
validation and comparison of additive models – encompassing statisti-
cal approaches and leveraging advanced deep learning (DL) technology
in artificial intelligence (AI) – to identify the optimal modeling system
for directly forecasting forest biomass carbon pools simultaneously at
the stand-level of tropical forests. This approach saves time and costs
compared to tree biomass additive models (Kralicek et al. 2017; Huy
et al. 2024).

Forest biomass estimation relies on allometric equations that predict
tree-level above- and belowground biomass (agb and bgb, respectively)
(Vashum and Jayakumar 2012), based on commonly predictive cova-
riates such as diameter at breast height (d), tree height (h) and wood
density (wd), which are subsequently used to convert estimated tree
biomass into biomass carbon stocks in above- and belowground com-
ponents in tropical mixed species forests (IPCC 2003, 2006; Poudel and
Temesgen 2016; Kralicek et al. 2017; Huy et al. 2016a, 2016b). This
requires precise tree species identification to determine thewd values for
each species. Identifying tree species in tropical mixed-species forests
requires expertise in forest botany; without such experts, the reliability
of the data may be compromised. This can incur significant costs in
resources, including time, budget, and professional labor.

Additivity of component masses is one of the desired properties in
developing biomass models, which is often ensured by fitting compo-
nent models as a system with weighted nonlinear seemingly unrelated
regression (WNSUR) (Parresol 2001; Huy et al. 2023; Xin et al. 2023).
Multivariate adaptive regression splines (MARS) is an algorithm
designed for non-parametric regression to address complex linear and
nonlinear regression problems (Friedman 1991). MARS is specifically
designed to capture additive and interaction effects (Koc and Bozdogan
2015) and offers a flexible approach to regression modeling in high-
dimensional datasets (Huang et al. 2019; Milborrow 2021; Yasmir-
ullah et al. 2021). This makes MARS an attractive option for simulta-
neously modeling stand-level AGB, BGB, and total, but limited studies
have applied MARS in this particular context. Only a few researchers
have successfully employed MARS in combination with remote sensing
techniques to estimate forest height and total AGB (Filippi et al. 2014;
Laurin et al. 2016; Arjasakusuma et al. 2020) or to predict forest growth
and yield (Lei 2019).

Machine learning (ML) approaches have been widely applied in
recent years. In terms of forestry research, He et al. (2023) developedML
techniques to estimate stand-level biomass in mixed forests in northeast
China, while Xu et al. (2022) employed ML techniques and multi-task
artificial neural networks (ANNs) to estimate biomass for multiple tree
components simultaneously. DL — a subset of ML, can facilitate the
exploratory analysis of relationships among forest ecological and envi-
ronmental factors (Wang et al. 2021; Ozdemir et al. 2022). DL algo-
rithms have also been developed to model the height-diameter
relationship in complex tropical rainforest ecosystems (Ogana and
Ercanli 2021) and to predict tree crown width in natural mixed forests
(Qin et al. 2023). Recently, Huy et al. (2022b, 2024) developed single-
output DL models to predict tree AGB and multi-output DL models for
simultaneous predictions of tree-level above- and belowground biomass
in tropical forests.

The literature on modeling stand-level forest biomass is limited (Xin
et al. 2023). There is a need to develop and select optimal, parsimonious
stand-level biomass models capable of directly and simultaneously
predicting AGB, BGB, and their total ABGB. Such models have the po-
tential to substantially improve accuracy, reduce costs, and minimize
professional labor by eliminating the necessity to identify individual tree
species or species-specific wd predictive variables compared to using
tree-level additive biomass equations in tropical mixed- species forests.

The objectives of this study were to 1) Assess deep learning additive
models (DLAMs) for simultaneously predicting AGB, BGB, and ABGB at
the stand-level integrating forest stand, ecological, and environmental
factors as predictive covariates in tropical mixed-species forests, and 2)
Perform cross-validations to assess the reliability and accuracy of the
statistical methods WNSUR and MARS, along with DLAMs, to propose
the optimal approach for the simultaneous prediction of AGB, BGB, and
ABGB at the stand-level, ensuring additivity. We hypothesized that
innovative DLAMs can substantially enhance the accuracy of stand-level
AGB, BGB, and total ABGB predictions in tropical mixed- species forests
compared to conventional statistical approaches.

2. Materials and methods

2.1. Studied ecoregions

This study was carried out in five out of eight ecological regions of
Vietnam, namely the Central Highlands (CH), the North Central Coast
(NCC), the Northeast (NE), the South Central Coast (SCC), and the
Southeast (SE) (Fig. 1). We studied two types of forests: Dry Dipterocarp
Forest (DDF) and Evergreen Broadleaf Forest (EBLF). EBLF was studied
in all five ecoregions, while DDF was only studied in the two where it is
distributed, CH and SE. The characteristics and variations in the forest
stand and the ecology and environment of the study areas are presented
in Table 1.

2.2. Data and selection of variables

A total of 121 purposive sample plots were performed, ranging in size
from 500 to 10,000 m2, with the predominant plot size being 900 m2,
with 61 plots designated for DDF and 60 plots for EBLF. The sample plots
were distributed across various forests, ranging from immature to
mature or heavily to lightly disturbed. Consequently, smaller plots were

Table 1
Statistical metrics of responses and predictive covariates.

ID Variables Min. Mean Max. Std.

Responses
1 AGB (Mg ha− 1) 10.4 200.7 1012.1 206.1
2 BGB (Mg ha− 1) 1.8 24.0 84.3 17.6
3 ABGB (Mg ha− 1) 12.2 224.6 1080.9 222.9

Predictive covariates
Forest stand variables

4 Dg (cm) 8.5 19.2 32.3 4.7
5 Hg (m) 4.7 12.3 20.7 3.8
6 N (tree ha− 1; with d ≥ 5 cm) 156 847 2760 462
7 G (m2 ha− 1) 3.8 25.7 92.6 18.8
8 V (m3 ha− 1) 9.1 220.5 1043.8 221.9
9 FT (categorical variable) DDF, EBLF

Ecological factors
10 EC (categorical variable) CH, NCC, NE, SCC, SE
11 SG (categorical variable) FA, OA, RF
12 P (mm year− 1 averaged) 1070 1880 2216 225
13 T (◦C year− 1 averaged) 15.4 22.9 26.3 3.3
14 EL (m) 156 613 1870 479
15 SL (degree) 0 9 50 12

Note: AGB: aboveground biomass, BGB: belowground biomass, ABGB: above-
and below-ground biomass at stand-level. Dg: quadratic mean diameter at breast
height (d), Hg: average tree height corresponding to Dg, N: number of trees per
hectare, G: stand basal area per hectare, V: stand volume per hectare. FT: Forest
type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest. EC:
ecoregion, CH: Central Highlands, NCC: North Central Coast, NE: northeast,
SCC: South Central Coast, SE: southeast. SG: soil group, FA: Ferric Acrisols, OA:
Orthic Acrisols, RF: Rhodic Ferrasols. P: mean annual precipitation, T: mean
annual temperature. EL: elevation. SL: slope. Statistical metrics were calculated
based on 121 sample plots. For FT: 61 plots for DDF and 60 plots for EBLF. For
EC: 110 plots for CH, 2 plots for NCC, 4 plots for NE, 2 plots for SCC, and 3 plots
for SE. For SG: 61 plots for FA, 39 plots for OA and 21 plots for RF.
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located in high-density regenerating forest areas, while larger plots were
placed in mature or heavily disturbed forests with sparse density. The
distribution of sample plots based on quadratic mean diameter at breast
height (Dg) follows a bell-shaped curve, while the distribution of stand
volume exhibits a reverse J-shaped curve (Fig. 2). This indicates that
tropical forests in Vietnam are concentrated at volumes below 200 m3

ha− 1, with a marked decrease in forest distribution as volume exceeds
200 m3 ha− 1.

For each sample plot, the coordinates were determined, and the tree
variables d and h were measured for all of the trees. We measured all
individuals with d larger or equal to 5 cm. The species name of the trees
was also identified. Additionally, ecological environmental factors were
assessed and recorded in each sample plot.

2.2.1. Response variables
The study considered three simultaneous response variables: AGB,

BGB and total ABGB at stand-level. These values were derived by
applying tree-level biomass models such as the equations of tree
aboveground biomass (agb) and tree belowground biomass (bgb)
developed by Huy et al. (2016a, 2016b) and Kralicek et al. (2017) for
two forest types, DDF and EBLF, across ecoregions of CH, NCC, NE, SCC
and SE. For the DDF, the tree agb equation incorporates three tree pre-
dictors: d, h andwd; on the other hand, the tree bgb equation relies on the
common tree predictors d and h; and these tree agb and bgb equations
were applied in both ecological regions of CH and SE, where DDF is
distributed. In the case of EBLF, the tree agb model is specific to each of

the five ecoregions CH, NCC, NE, SCC and SE and utilizes a combination
of three tree predictors d, h, and wd. In comparison, the tree bgbmodel is
shared among all five ecoregions and only uses the tree predictor d. The
tree agb and bgbmodels used in the study can be found in Table 2. When
calculating tree agb using equations that incorporate the predictive
variable wd, which were determined based on species-specific data from
databases published by Zanne et al. (2009), Huy et al. (2016a, 2016b),
and Kralicek et al. (2017). After obtaining the calculated agb and bgb
values for each tree within each sample plot, stand-level AGB repre-
sented the sum of tree agb and stand-level BGB represented the sum of
tree bgb within the plot. Furthermore, the stand-level ABGB in the plot
was calculated as the sum of AGB and BGB. AGB, BGB, and ABGB values
were then converted to Mg per hectare for each plot.

2.2.2. Predictive covariates
This study consisted of 12 predictors, which are as follows: The forest

stand included six variables calculated at the plot level and expressed
per hectare (ha). These variables included Dg, average height (Hg) cor-
responding to Dg obtained from the h-d regression model (Huy et al.
2022a), stand density (N), stand basal area (G), stand volume (V)
calculated as the sum of the volumes of individual trees based on their d,
h and a form factor value of 0.45 (Vanclay 1994), and a categorical
variable representing the forest type (FT) including DDF and EBLF. The
ecological and environmental variables comprised six factors recorded
or extracted at the plot coordinates. These variables included climate
variables such as mean annual temperature (T) and mean annual pre-
cipitation (P) averaged over 30 years (1970–2000), obtained from raster
files of the climate surface with a spatial resolution of 30 s (~1 km) (Fick
and Hijmans 2017); the soil group (SG) was categorical into Ferric
Acrisols (FA), Orthic Acrisols (OA), and Rhodic Ferrasols (RF) extracted
from the soil map of FAO-UNESCO (2005); the ecoregion (EC) variable
encompassed five categories: CH, NCC, NE, SCC and SE, and elevation
(EL) and slope (SL) variables were recorded for each sample plot. These
ecological and environmental variables provide additional information
on the study area’s climate, soil, ecoregion, and topography, potentially
influencing tropical forest biomass dynamics.

A summary of the response variables and predictive covariates is
shown in Table 1.

2.2.3. Selection of predictive covariates
Factor analysis for mixed data (FAMD) (Huy et al. 2022b) was

employed to identify and select the most influential predictive cova-
riates for stand-level AGB, BGB, and ABGB. This statistical technique
allows for the analysis of both numeric and categorical variables
simultaneously, enabling a comprehensive assessment of the impact of
the covariates on stand-level biomass variables. In the study, 15 vari-
ables were considered, comprising 3 response numeric variables (AGB,
BGB, and ABGB) and 12 predictive covariates. The predictive variables
consisted of 9 numeric variables (Dg, Hg, N, G, V, T, P, EL, and SL) and 3

Fig. 2. Distribution of sample plots by quadratic mean diameter at breast height (Dg) in classes (left) and by classes of stand volume (V) (right).

Table 2
Individual tree agb and bgb equations used for estimating stand-level above- and
belowground biomass in two tropical forest types and across five ecoregions.

Forest
types

Ecoregions Tree allometric equations Sources of
equations

DDF CH, SE agb = 0.0620 × d2.264 × h0.5142 ×
wd0.7946

Huy et al.
(2016b)

bgb = 56.48 × (d2h)0.9132 Kralicek et al.
(2017)

EBLF CH agb = 0.7988 × (d2hwd)0.9656 Huy et al. (2016a)
NCC agb = 0.6805 × (d2hwd)0.9385 Huy et al. (2016a)
NE agb = 0.6801 × (d2hwd)0.9384 Huy et al. (2016a)
SCC agb = 0.6852 × (d2hwd)0.9395 Huy et al. (2016a)
SE agb = 0.6473 × (d2hwd)0.9309 Huy et al. (2016a)
All bgb = 0.1689 × d1.765 Kralicek et al.

(2017)

Note: agb: tree aboveground biomass (kg tree− 1), bgb: tree belowground biomass
(kg tree− 1). d: diameter at breast height (cm), h: tree height (m), wd: wood
density (g cm− 3). d2h is a surrogate of volume in m3= (d / 100)2× h and d2hwd is
a surrogate of biomass in kg = d2h × wd × 1000. Forest type: DDF: Dry
Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest. Ecoregion: CH: Central
Highlands, NCC: North Central Coast, NE: northeast, SCC: South Central Coast,
SE: southeast.
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nominal categorical variables (FT, SG, and EC). The factor analysis was
performed using the FAMD function in the FactoMineR package (Lê
et al. 2008) implemented in R (R Core Team 2023).

2.3. Weighted nonlinear seemingly unrelated regression (WNSUR)

The relationships between stand-level AGB, BGB, and total ABGB
responses to the stand variables follow a power function and exhibit
heterogeneity of errors (Fig. 3) and additivity. Therefore, the WNSUR
method needs to be applied (Parresol 2001; Poudel and Temesgen 2016;
Kralicek et al. 2017; Huy et al. 2019, 2023; Xin et al. 2023).

To select the model form for each component – stand-level AGB,
BGB, and ABGB – based on stand covariates (Xin et al. 2023), we used
weighted nonlinear fitting by maximum likelihood (WNML) by applying
the ‘nlme’ function (Lindstrom and Bates 1990) on the independent
component models in the statistical software R (R Core Team 2023).

This study also examined a WNSUR modeling system that simulta-
neously predicts stand-level AGB, BGB, and ABGB by incorporating
environmental and ecological factors. In this case, the biomass models
take the form of two parts: a selected average biomass model and a
modifier. The general model form is (Huy et al. 2022a, 2022b) as
follows:

Biomass Componenti = Averagei ×Modifieri + εi (1)

where Averagei is the ith independent model of AGB/BGB versus the
stand variables selected by cross-validation; Modifieri is the ith expo-
nential function that adjusts the predicted values of the biomass
component i based on the selected environmental and ecological vari-
ables from FAMD. εi is the random error of the ith function.

The detailed form of the modeling system (Eq. 1) for simultaneously
predicting stand-level AGB, BGB, and ABGB associated with environ-
mental and ecological variables fitted by WNSUR is expressed as follows
(Huy et al. 2022a):

AGB = a1Xb1j
1j

∏n

k=1
exp(e1k(factork–averaged value of factork) )+ ε1

(2)

BGB = a2Xb2j
2j

∏n

k=1
exp(e2k(factork–averaged value of factork) )+ ε2

(3)

ABGB =AGB+BGB

= a1Xb1j
1j

∏n

k=1
exp(e1k(factork–averaged value of factork) )

+ a2Xb1j
1j

∏n

k=1

exp(e2k(factork–averaged value of factork) )+ ε3

(4)

where Averagei = aiXij
bij functions selected from cross-validation of in-

dependent models fitted by WNML for stand-level AGB and BGB versus
stand variables; ai and bij are parameters of the power model i (i= 1, 2, 3
for the AGB, BGB, and ABGB, respectively) and the jth predictor; Xij
represents the predictor or combination of stand variables for the ith

equation and the jth predictor. Modifieri represents the ith Modifier

equation =
∏n

k=1
exp
(
eik ×

(
variablek − averaged value of factork

)
), where

eik is the parameter for the ith Modifier equation and the kth factor, and n
is the number of environmental and ecological covariates selected based
on FAMD; the averaged values of factork are presented in Table 1; for
categorical factors, encoding was performed as follows: FT: DDF= 1 and
EBLF= 2, with a mean value of 1.5; SG: FA, OA, and RF were encoded as
1, 2 and 3, respectively, with a mean value of 1.7. In the Modifier
function, when factor values are equal to their means, the Modifier value
is 1 and the Biomass Component equation is equal to the Average
function (Huy et al. 2022a). However, when environmental and
ecological factors deviate from their means, the biomass component
models are adjusted according to the exponential function and the pa-
rameters. εi is the residual for the ith equation (i = 1, 2, 3). Weight
variable = 1/Xj

δ, δ: the variance function coefficient.
The WNSUR models associated with environmental and ecological

covariates (Eqs. (2), (3), (4)) were performed using the generalized least
squares (GLS) method in SAS software (SAS Institute Inc. 2014).

Fig. 3. Scatter plots stand-level above- and belowground biomass and their total (AGB, BGB and ABGB, respectively) versus stand covariates of quadratic mean
diameter at breast height (Dg), average tree height (Hg) corresponding to Dg, stand basal area (G) and stand volume (V).
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2.4. Multivariate Adaptive Regression Spline (MARS)

The MARS model is formulated using an expansion in product spline
basis functions. Importantly, the data automatically determines the
number of basis/hinge functions and the coefficients linked to each
product degree and knot (Friedman 1991). The general MARS forms
(Friedman and Silverman 1989; Friedman 1991; Huang et al. 2019) for
simultaneously predicting responses are as follows:

AGB = a1 +
∑k

h=1
b1h • h(Xzh − czh, czh − Xzh)+ ε1 (5)

BGB = a2 +
∑k

h=1
b2h • h(Xzh − czh, czh − Xzh)+ ε2 (6)

ABGB = a3 +
∑k

h=1
b3h • h(Xzh − czh, czh − Xzh)+ ε3 (7)

where AGB, BGB, and ABGB represent the stand-level above- and
belowground, and total biomass, respectively; ai is the intercept term for
the ith model (i= 1, 2 and 3 for the equations of simultaneous predictions
of AGB, BGB and ABGB, respectively); h represents the hinge function
with a total of k functions; bih is the coefficient associated with the model
ith for the hth function; Xzh is the zth predictive variable chosen in the hth

function; czh is a constant known as a knot value associated with the zth

variable for the hth function; εi denotes the random error of the ith

model. With three AGB, BGB and ABGB responses, MARS builds three
simultaneous component models. Each model has the same set of hinge
functions ‘h(Xzh − czh, czh − Xzh)’; they only differ in the coefficients ‘ai’,
‘bih’ and random errors ‘εi’ (Milborrow 2021).

The basic/hinge function is a piecewise-linear function that captures
nonlinear relationships between responses and predictor variables.
Within the hinge function, numerical values act as thresholds or cut-off
points, effectively partitioning the input variables in the MARS models.
This partitioning enables the modeling of variable interactions and
nonlinearities.

This study has three continuous responses (stand-level AGB, BGB,
and ABGB) and seven predictors (G, M, T, EL, FT, Hg, and SG) selected
using FAMD. Among the predictors, two are nominal categorical vari-
ables: FT and SG. Notably, MARS can effectively handle continuous and
nominal categorical variables (Friedman 1993; Yasmirullah et al. 2021).

This study employed the ‘earth’ in R (R Core Team 2023) for MARS
modeling (Milborrow 2023) to develop, cross-validate, and select the
optimal equation system for simultaneously predicting stand-level AGB,
BGB, and ABGB. In the case of MARS, two crucial hyperparameters,
‘degree’ and ‘prune’ require adjustment (Naser et al. 2022). The ‘degree’
represents the highest level of complexity, with ‘degree’ = 1 indicating a
linear relationship and ‘degree’ ≥ 2 representing nonlinear interaction
(Friedman 1991). However, an excessively high ‘degree’ can lead to
overfitting, necessitating a careful balance between model complexity
and available data. Regarding ‘prune’, it specifies the maximum quan-
tity of terms in the pruned model, encompassing k hinge functions and
the intercept. When ‘degree’ is set, and ‘nprune’ is NULL, the ‘earth’
function automatically selects predictive variables (Xzh), determines
term numbers, and estimates values for the hinge function knots (czh),
along with the parameters of coefficients (bih) and intercepts (ai),
streamlining the MARS model development process (Naser et al. 2022).

This approach employed cross-validation (details presented in the
next section) for a range of MARS modeling systems using various ‘de-
gree’ values ranging from 1 to 6. The outcomes of cross-validation
supported selecting the optimal ‘degree’ value, ensuring that the
MARS modeling system effectively captures both the goodness-of-fit and
error metrics.

2.5. Deep Learning Additive Models (DLAMs)

The study introduced DLAMs, a formulation of DL models. These
models can generate multiple outputs or predictions simultaneously,

which is known as multi-output learning. The process involves training a
deep neural network (DNN) to discern complex relationships and pat-
terns within multi-inputs, facilitating predictions for multiple target
variables. DLAMs map multiple inputs to various outputs, thus allowing
for a more comprehensive analysis (Xu et al. 2020). Notably, DLAMs
excel in capturing correlations and dependencies among output vari-
ables, leveraging shared information. By jointly training the DNN to
make multiple predictions simultaneously, it extracts relevant features
and relationships that contribute to all predictions. This simultaneous
prediction of multiple outputs, informed by multi-input covariates, ex-
tends the model’s applicability to complex decision-making problems.
This approach resembles the method aiding in error reduction within the
modeling system.

The operational mechanism of DLAMs as a multi-input multi-output
learning system upgraded from single-output DL models (Huy et al.
2022b), and shares similarities with multi-output DL models (Huy et al.
2024). These models consist of multiple layers within DNNs, allowing
the network to capture hierarchical representations of multi-input data
(LeCun et al. 2015; Chollet 2018; Huy et al. 2022b). However, in a multi-
output modeling framework, the final layer of the DNNs is explicitly
configured to produce multiple outputs instead of a single output.
Furthermore, in this study, DLAMs were tailored to consider correlations
among errors of component models and ensure additivity when simul-
taneously predicting multiple outputs.

Various types of ANNs, including DNNs, convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs), have been
employed in DL models (LeCun et al. 2015; Huy et al. 2022b; Qin et al.
2023). Compared to traditional ANNs, DNNs feature a more intricate
structure, comprising multiple layers of parameterized, distinct
nonlinear modules trained using backpropagation (LeCun et al. 2015;
Ogana and Ercanli 2021; Qin et al. 2023; Huy et al. 2024). Considering
this, the study adopted the DNN architecture and developed multi-input
multi-output deep neural networks (MODNNs) to create, cross-validate,
and select the most suitable DLAMs.

The function system that expresses the MODNNs learning process for
simultaneous multi-response predictions was adapted from Huy et al.
(2022b, 2024). The modified function system is outlined as follows:

Ymulti− product j =
∑z

i=1
Xi ×wi + εi (8)

Ymulti− product =
[
Ymulti product 1,…Ymulti− product j,…,Ymulti− product ne

]
(9)

Ymulti− output j = f

(
∑z

i=1
Xi ×wi + εi

)

(10)

Ymulti− output =
[
Ymulti− output 1,…Ymulti− output j,…,Ymulti− output ne

]
(11)

where Ymulti-product j represents the multi-product at the jth neuron
among ne neurons of the neural network, Xi = [X1, X2,… Xi .., Xz] is the
input vector with z predictive variables, wi is the weight on the inter-
connection between Xi and the jth neuron, εi represents the bias value,
Ymulti-product denotes the multi-product vector traversing through ne
neurons of the neural network, Ymulti-ouput j refers to the multi-output at
the jth neuron among the ne neurons of the neural network, f is the
activation function applied at the jth neuron, and Ymulti-output represents
the multi-output vector through ne neurons of the neural network.

The learning process of MODNNs facilitates the modeling of complex
relational functions among multiple input variables, allowing for a
comprehensive representation in the multi-output layer (LeCun et al.
2015; Huy et al. 2022b). This transformation is achieved through a
parameterized layer with weights, as described by Huy et al. (2022b).
The weights in the layer play a crucial role in capturing the relationships
between the multi-inputs and generating accurate predictions for the
multiple outputs within the MODNNs architecture. The learning process
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of MODNNs can be described as a multiple input and multiple output DL
approach (Zhang et al. 2021). This characterization acknowledges the
capability of the MODNNs to handle multiple input variables and
generate multiple output predictions simultaneously, making it suitable
for complex modeling tasks involving various inputs and outputs.

In this study, theMODNNs for the DLAMs were composed of multiple
layers, including a multi-input layer with response variables of observed
stand-level AGB, BGB, and ABGB, and predictive covariates of observed
forest stand, ecological and environmental factors selected by FAMD.
The hidden layers consisted of hundreds to thousands of neurons and a
multi-output layer was responsible for simultaneously predicting stand-
level AGB, BGB and ABGB. Fig. 4 depicts the simulated architecture of
the MODNN for the DLAMs, an enhanced version built upon the DNN
structure initially proposed by Huy et al. (2022b).

Choosing a suitable loss function (Huy et al., 2022b) to train and
control the MODNNs for the DLAMs is crucial. In predicting forest
biomass, emphasizing enhancing accuracy by reducing the percentage
deviation, we selected the mean absolute percent error (Huy et al.

2022b) as our loss function (MAPEloss, Eq. 12). This function aims to
align the errors in predicting both stand-level AGB and BGB components
simultaneously, along with an additional constraint loss that ensures the
predicted total ABGB closely matches the combined sum of the observed
stand-level AGB and BGB components (Huy et al. 2024).

MAPEloss (%) =
100
k
∑k

j=1

{⃒
⃒
⃒
⃒
YAGBj − ŶAGBj

YAGBj

⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒
YBGBj − ŶBGBj

YBGBj

⃒
⃒
⃒
⃒

+

⃒
⃒
⃒
⃒
YABGBj − ŶABGBj

YABGBj

⃒
⃒
⃒
⃒

} (12)

where; YAGBj, YBGBj, YABGBj and ŶAGBj, ŶBGBj, and ŶABGBj were observed
and predicted AGB, BGB, and ABGB for the jth sample plot, respectively.
k represented the total number of observed/predicted values from the
validation or training dataset.

We used the One-Hot Encoding method to incorporate categorical
variables into the MODNNs algorithms (Huy et al. 2022b). This encod-
ing technique used the Pandas library’s pd.get_dummies function
(McKinney and Pandas Development Team 2022) to convert categorical
variables into binary vectors. This transformation effectively utilizes
categorical variables as inputs in the MODNNs modeling process,
leveraging the functionality provided by Pandas’ API.

The optimal MODNNs performance in this study was customized to
suit the dataset’s characteristics (Table 3), which are briefly described as
follows: 1) Scaling numeric covariates: Three approaches were tested: i)
Non-scaling; ii) Normalizing variables: The variables were divided by
their maximum values and scaled to the range [0,1]; iii) Standardizing
variables: The variables were standardized using the StandardScaler
from the ‘sklearn.preprocessing’ module of the Python library (Huy et al.
2022b, 2024). The examination results indicated that for the given
covariates, the non-scaling of numeric covariates was found to be more
suitable and was chosen. 2) Optimization algorithm: Several key algo-
rithms, including Adam, RMSprop, and Stochastic Gradient Descent
(SGD) from the Keras library (Keras 2022), were evaluated to identify
the best fit for achieving simultaneous predictions and actual multi-
outputs. The results of the evaluation indicated that the Adam opti-
mizer was chosen as the optimal algorithm for MODNNs. 3) Learning rate
selection: The learning rate plays a crucial role in determining the extent

Fig. 4. Multi-Output Deep Neural Network (MODNN) simulation to simultaneously predict forest above- and belowground biomass and their total (ABG, BGB and
ABGB, respectively), ensuring additivity, as Deep Learning Additive Models (DLAMs) with forest stand, ecological, and environmental factors as input predic-
tive covariates.

Table 3
The primary analysis for selecting the algorithm, functions, hyperparameters
and structure of the Multi-Output Deep Neural Network (MODNN).

ID Elements Minimum Step Maximum Optimal
selection

1 Batch 32 = 25 2n with n =

5, 6
64 = 26 32 = 25

2 Epoch numbers 1000 1000 5000 3000
3 Learning rate 0.0001 0.001 0.01 0.001
4 Number of

hidden layers
2 1 15 5

5 Number of
neurons per
hidden layer

32 = 25 2n with n =

5, 6, 7, 8, 9
and 10

1024 =

210
512 = 29

6 Optimal
algorithm

Adam, RMSprop, Stochastic Gradient
Descent (SGD)

Adam
optimizer

7 Patience 500 500 1500 1000
8 Scaling

predictive
variables

Non-scale, Normalization,
Standardization

Non-scale
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of weight adjustment during training (Huy et al. 2022b, 2024). In this
study, the optimal learning rate of 0.001 was selected. 4) Activation
functions: The selection of activation functions can greatly influence the
performance of a MODNN (Bai 2022). Nonlinearity is vital in enabling
MODNNs to effectively learn complex functional mappings from multi-
inputs to multi-outputs. Among several popular activation functions
such as Sigmoid, Tanh, Softmax, and Rectified Linear Unit (ReLU)
(Sarker 2021), ReLU is commonly used in DNN architectures to intro-
duce essential nonlinear properties (Bai 2022). This study chose the
ReLU activation function from the Keras library (Keras 2022) for the
hidden layers (Huy et al. 2022b, 2024). For the output layer, it is
common practice to use a linear activation function (Huy et al. 2022b,
2024). 5) The number of hidden layers: The number of hidden layers in a
MODNN can be adjusted to find the optimal depth for the specific task.
The general structure of a DNN typically consists of two or more hidden
layers (Sarker 2021). This study found that 5 layers yielded the best
results. Additionally, a dropout layer with a parameter of 0.5 was
applied to prevent overfitting and improve the generalization of the
modeling system (Keras 2022). 6) Number of neurons per hidden layer:
The number of neurons in each layer can be adjusted to control the
model’s complexity. This study determined that the optimal choice for
each hidden layer was 512 neurons. 7) Epoch numbers: The number of
epochs is a crucial hyperparameter that defines the number of times a
deep learning algorithm iterates through the entire training dataset
(Huy et al. 2022b, 2024). This study identified that the optimal choice
was 3000 epochs. 8) Batch size: The batch size is an important hyper-
parameter that determines the number of training examples used in each
training iteration (Huy et al. 2022b, 2024). In this study, the optimal
choice was determined to be 32. 9) An early stop functionwith a patience
parameter was implemented to halt the training when the validation loss
ceased to decrease (Huy et al. 2022b), indicating the model’s potential
overfitting. After evaluation, a patience value of 1000 was determined to
be the optimal choice.

The DLAMs codes were developed and implemented in Python
(Python 2022), utilizing various Python libraries (Chollet 2018; Huy
et al. 2022b, 2024). The code specifically utilized the Keras library
(Keras 2022) in conjunction with Pandas (McKinney and Pandas

Development Team 2022) for data manipulation and the TensorFlow
backend (TensorFlow 2023) for deep learning operations (Chollet 2018;
Huy et al. 2022b; Qin et al. 2023). We used these libraries’ Application
Programming Interfaces (APIs) and leveraged to define and train the
MODNNs for simultaneous prediction of forest above- and belowground
biomass. Python provided a flexible and powerful environment for
implementing the MODNNs architecture and conducting the required
DLAMs tasks.

2.6. Selecting the optimal modeling systems

We developed various modeling systems in this study, including
DLAMs, MARS, WNML, and WNSUR, utilizing different methods or ap-
proaches. The models were subjected to cross-validation to compare
their performance and select the most optimal ones. The dataset was
randomly divided into two subsets, allocating 70 % of the samples for
training and reserving the remaining 30 % for validation. Cross-
validation was performed ten times. We used the Akaike Information
Criterion (AIC) (Akaike 1973), where lower AIC values indicate better
fits to evaluate the adequacy of different equation forms. Additionally,
the Fit Index (FI) was utilized as a goodness-of-fit measure, with values
closer to 1 indicating superior model fits. To assess the reliability of the
models, main error metrics were calculated, encompassing bias (%), root
mean square error (RMSE, Mg ha− 1), and mean absolute percent error
(MAPE, %), as described by Huy et al. (2022a, 2022b).

Bias (%) =
1
C
∑C

1

100
k
∑k

j=1

Yj − Ŷj

Yj
(13)

RMSE
(
Mg ha− 1)

=
1
C
∑C

1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
k
∑k

j=1

(
Yj − Ŷj

)2

√
√
√
√ (14)

MAPE (%) =
1
C
∑C

1

100
k
∑k

j=1

⃒
⃒
⃒
⃒
Yj − Ŷj

Yj

⃒
⃒
⃒
⃒ (15)

FI =
1
C
∑C

1

⎛

⎜
⎜
⎜
⎝
1 −

∑k

j=1

(
Yj − Ŷj

)2

∑k

j=1

(
Yj − Y

)2

⎞

⎟
⎟
⎟
⎠

(16)

where C was the number of repeats (10) of cross-validation; k was the
number of sample plots in the validation dataset (30 % randomly split
dataset); and Yj, Ŷj and Y were the observed, predicted, and averaged
AGB, BGB and ABGB values, respectively, for the jth sample plot of the
validation dataset in realization C.

Bias and MAPE statistics, calculated using Eqs. (13) and (15), have
been widely applied in forest biomass prediction evaluations (e.g., Huy
et al. 2022b; Huy et al. 2023; Huy et al. 2024). In certain instances, these
metrics tend to be biased towards negative errors (i.e., Yj < Ŷj) more
than positive ones. To address this, metrics like the average systematic
error (ASE) and mean percent standard error (MPSE) have been used,
where the predicted rather than observed value is used in the denomi-
nator (Zeng et al. 2017, 2024; Huy et al. 2023). However, in the context
of deep learning, we experimented with using predicted values in the
denominator (Zeng et al. 2017, 2024) of the MAPEloss. This approach
tended to inflate the estimates to optimize the model, leading to sub-
stantial bias. Therefore, this study used Eqs. (13) and (15) with the
observed values in the denominator. Additionally, an array of statistical
metrics was applied to ensure the optimal selection of conventional
regression forms.

The WNML, WNSUR, and MARS approaches employed cross-
validation to compute averaged statistics and error metrics for their
experimental modeling systems across 10 realizations. They then
compared these metrics among the different models to identify the most

Fig. 5. FAMD results: Contribution percentage of 15 categorical nominal and
numerical variables to the overall structure, with the average level indicated by
a dashed line.
Note: AGB: aboveground biomass, BGB: belowground biomass, ABGB: above-
and belowground biomass at stand-level. G: stand basal area per hectare. V:
stand volume per hectare. T: mean annual temperature, EL: elevation, FT: forest
type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest. Hg:
average tree height corresponding to Dg. SG: soil group, FA: Ferric Acrisols, OA:
Orthic Acrisols, RF: Rhodic Ferrasols. Dg: quadratic mean diameter at breast
height. N: number of trees per hectare. SL: slope. EC: ecoregion, CH: Central
Highlands, NCC: North Central Coast, NE: Northeast, SCC: South Central Coast,
SE: Southeast. P: mean annual precipitation.
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effective form.
In DL modeling, the DLAMs method opted for the finest model by

minimizing the MAPEloss (Eq. 12). Employing the MODNNs framework,
the model underwent training and validation phases. TheMODNNs were
exposed to 70 % of randomly segmented training data throughout the
training and assessed against the remaining 30 %. This training regimen
entailed iterating through the entire dataset 3000 times (epochs), with a
batch size of 32. During each cross-validation iteration, training
MAPEloss (Eq. 12) values were calculated for the training data at each
epoch. The efficacy of the trained models was then assessed by
computing validation MAPEloss (Eq. 12) values associated with the
model’s predictions at each epoch, which were subsequently compared
with the actual values in each validation data. The best DLAMs was
selected based on its performance across 10 cross-validation folds,
prioritizing minimized MAPEloss on the validation data while ensuring
consistency with training metrics. The statistics and error metrics of the
selected model were computed to assess its effectiveness in the valida-
tion process, and the mean metrics were then calculated across the
validation folds.

Furthermore, diagnostic plots were used to assess the performance of
different modeling systems by comparing the trend of fitted/predicted
values to observed values for stand-level AGB, BGB, and ABGB.

3. Results

3.1. Selected variables for modeling process

Following FAMD analysis, five variables, namely Dg, N, SL, EC, and P
were found to contribute below the average level to the overall structure
and demonstrated the lowest impact on the response variables stand-
level AGB, BGB, and ABGB (Fig. 5). Consequently, these five predic-
tive variables were excluded from the modeling process. Ten variables,
exhibiting contributions above the average level to the overall vari-
ability, were included in the WNML, WNSUR, MARS, and DLAMs

modeling process. These variables comprised three response variables,
stand-level AGB, BGB, and ABGB, and seven predictive covariates: G, V,
T, EL, FT, Hg, and SG (Fig. 5).

3.2. WNSUR associated with stand, ecological and environmental factors

The modeling systems were fitted using WNML and cross-validated
to select the optimal equation forms for the independent biomass
component models of stand-level AGB, BGB, and ABGB. Different stand
predictor(s), or combinations of three stand covariates (G, V, and Hg)
selected from FAMD were used. The results are represented in Table 4,
which shows the comparison results based on cross-validation. To
address the limitations of the bias and MAPE formulas in certain cases,
we selected the final model forms based on multiple metrics, including
AIC, FI, Bias, RMSE, and MAPE (Table 4). The best equation forms for
predicting stand-level AGB, BGB, and ABGB separately were selected
based on different combinations of stand covariates. Specifically, the
combination of covariates (V,Hg) was chosen for the AGBmodel, (G,Hg)
for the BGB model, and (V, Hg) for the ABGB model (Table 4).

The WNSUR equation system was formulated as Biomass Componenti
= Averagei ×Modifieri. In this equation, Biomass Componenti represented
the ith biomass component (stand-level AGB, BGB); Averagei referred to
the selected equation form of the ith biomass component, where AGB= f
(V, Hg) and BGB = f(G, Hg) (Table 4); and Modifieri denoted the expo-
nential function that adjusts the prediction of the biomass component i
based on selected environmental and ecological factors from FAMD
including four predictors: T, EL, FT, and SG. The WNSUR method was
employed to develop the equation system that enables the simultaneous
prediction of stand-level AGB, BGB, and ABGB, ensuring additivity.
Cross-validation results for the WNSUR modeling systems are presented
in Table 5. Based on FI, Bias, RMSE, and MAPEmetrics, the selected best
WNSUR system included six predictive covariates: G, V, T, EL, Hg, and
SG (Table 5). This modeling system demonstrated statistically improved
performance compared to the independent biomass component models

Table 4
Cross-validation for selecting independent component biomass models of stand-level AGB, BGB, and ABGB using different stand level predictors by weighted nonlinear
maximum likelihood.

ID Equation forms Weight variable AIC FI Bias (%) RMSE (Mg ha− 1) MAPE (%)

AGB = f(Combinations of G, V, Hg)
1 AGB = a × Gb 1/Gδ 808.9 0.950 − 5.06 46.2 19.90
2 AGB = a × Vb 1/Vδ 719.1 0.969 − 4.41 42.2 12.35
3 AGB = a × Hgb 1/Hgδ 951.5 0.580 − 29.90 130.4 54.91
4 AGB = a × Gb1 × Vb2 1/Gδ 730.4 0.973 − 1.89 35.7 10.77
5 AGB = a × Gb1Hgb2 1/Gδ 761.7 0.948 − 2.58 42.7 13.86
6 AGB ¼ a £ Vb1Hgb2 1/Vδ 713.5 0.979 ¡2.51 35.0 11.28
7 AGB = a × Gb1Vb2Hgb3 1/Gδ 747.5 0.974 − 2.25 31.7 10.15

BGB = f(Combinations of G, V, Hg)
1 BGB = a × Gb 1/Gδ 385.3 0.981 − 9.37 2.2 16.23
2 BGB = a × Vb 1/Vδ 428.6 0.849 − 6.12 7.9 14.45
3 BGB = a × Hgb 1/Hgδ 601.8 0.533 − 15.29 10.8 37.25
4 BGB = a × (G × V)b 1/Gδ 387.5 0.950 − 2.15 4.6 11.57
5 BGB ¼ a £ Gb1Hgb2 1/Gδ 375.5 0.977 ¡2.92 2.4 10.13
6 BGB = a × Vb1Hgb2 1/Vδ 419.5 0.725 − 8.03 8.2 14.78
7 BGB = a × Gb1Vb2Hgb3 1/Gδ 371.4 0.973 − 5.33 2.3 12.25

ABGB = f(Combinations of G, V, Hg)
1 ABGB = a × Gb 1/Gδ 815.0 0.951 − 5.22 49.6 18.14
2 ABGB = a × Vb 1/Vδ 723.5 0.960 0.38 41.9 10.38
3 ABGB = a × Hgb 1/Hgδ 967.1 0.614 − 35.40 146.7 55.68
4 ABGB = a × Gb1 × Vb2 1/Gδ 743.7 0.972 − 1.15 33.8 9.15
5 ABGB = a × Gb1Hgb2 1/Gδ 773.9 0.964 − 1.79 41.2 11.81
6 ABGB ¼ a £ Vb1Hgb2 1/Vδ 725.3 0.968 ¡1.83 34.0 8.78
7 ABGB = a × Gb1Vb2Hgb3 1/Gδ 746.5 0.971 − 1.31 37.6 9.58

Note: All statistics were calculated using cross-validation with 10 realizations, each repeating the dataset was split randomly into 70 % for training and 30 % for
validation; statistics, and errors in mean results were averaged over ten times. AGB is aboveground biomass (Mg ha− 1), BGB is belowground biomass (Mg ha− 1), and
ABGB is above- and belowground biomass (Mg ha− 1) at stand-level. Hg in m is the height of the tree with a Dg (the quadratic mean diameter at breast height), G is the
stand basal area (m2 ha− 1), and V is the volume of the stand (m3 ha− 1). δ: the variance function coefficient. Bold: Selected model based on cross-validation statistics.
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for stand-level AGB and ABGB, with parameter significance indicated by
a p-value of <0.05 (Table 5 vs. Table 4).

However, the WNSUR BGB component model, including the Modi-
fier equation of the selected best WNSUR modeling system (Table 5),
exhibited a poorer goodness-of-fit compared to the independent BGB
model (Table 4). Therefore, the Modifier was removed from the WNSUR
BGBmodel, and its cross-validation results are presented in Table 5. The
results showed that the WNSUR BGB model with and without the
Modifier had the same FI values, but the model with the Modifier out-
performed the one without it in 5 of the 9 component-metrics combi-
nations. Thus, removing theModifier from the BGBmodel in theWNSUR
modeling system did not improve the goodness-of-fit of the WNSUR BGB
model compared to the independent BGB model without the Modifier
(Table 5 vs. Table 4). This can be explained by the nature of the WNSUR

approach, which considers the biological relationship between AGB,
BGB, and total ABGB to harmonize the reliability of the estimates for
each component, focusing on minimizing the error for the total ABGB
function and ensuring additivity. In this study, the selected best WNSUR
modeling system with Modifiers led to significant improvements in the
AGB and ABGB models, while the BGB model exhibited a poorer
goodness-of-fit compared to the independent component models
without Modifiers (Table 5 vs. Table 4).

The estimated parameters of the modeling systems for the simulta-
neous prediction of stand-level AGB, BGB, and ABGB; with models fitted
by WNSUR using the entire dataset, are shown in Table 6. In practical
applications, variable V needs to be converted from stand-level mea-
surements to aboveground and belowground biomass. Consequently, a
WNSUR modeling system utilizing the entire dataset was developed to
simultaneously predict stand-level AGB, BGB, and ABGB using the single

Table 5
Cross-validation of modeling systems of the Biomass Componenti = Averagei ×
Modifieri for simultaneously predicting stand-level AGB, BGB and ABGB associ-
ated with environmental and ecological variables fit by Weighted Nonlinear
Seemingly Unrelated Regression (WNSUR).

ID Simultaneous
modeling system

Weight
variable

FI Bias
(%)

RMSE
(Mg
ha− 1)

MAPE
(%)

1 AGB = a1Vb11Hgb12

exp(e11 / 100(T −

22.9) + (e12 / 1000)
(EL − 613) + e13*(FT
− 1.5) + e14(SG −

1.7))

1/Vδ 0.986 − 2.48 29.2 9.06

BGB = a2*Gb21Hgb22*

exp(e21/100(T −

22.9) + (e22 / 1000)
(EL − 613) + e23*(FT
− 1.5) + e24* (SG −

1.7))

1/Gδ 0.776 3.22 5.1 19.35

ABGB = AGB + BGB 1/Gδ 0.990 − 1.63 29.5 8.74
2 AGB = a1Vb11Hgb12

exp(e11 / 100 (T −

22.9) + (e12 / 1000)
(EL − 613) + e14(SG
− 1.7))

1/Vδ 0.986 2.88 28.3 9.17

BGB = a2Gb21 exp
(e21 / 100 (T − 22.9)
+ (e22 / 1000) (EL −

613))

1/Gδ 0.886 − 3.30 4.2 18.31

ABGB = AGB + BGB 1/Gδ 0.989 1.99 29.1 7.71
3 AGB = a1Vb11Hgb12

exp(e11 / 100(T −

22.9) + (e12 / 1000)
(EL − 613) + e14(SG
− 1.7))

1/Vδ 0.986 3.56 28.0 9.60

BGB = a2Gb21 1/Gδ 0.886 − 15.07 2.0 18.72
ABGB = AGB + BGB 1/Gδ 0.989 0.69 28.1 8.55

Note: The general form: Biomass Componenti = Averagei × Modifieri + εi; where
Averagei = the ith independent model of AGB/BGB versus the stand variables of
G, V and Hg selected by cross-validation;Modifieri is the ith exponential function
that helps adjust the prediction values of the biomass component i based on the
environmental and ecological factors (T, EL, FT, SG) selected according to
FAMD. AGB is the aboveground biomass (Mg ha− 1), BGB is the belowground
biomass (Mg ha− 1), andABGB is the above- and belowground biomass (Mg ha− 1)
at stand-level. G is the stand basal area (m2 ha− 1), V is the volume of the stand
(m3 ha− 1), and Hg in m is the height of the tree with a Dg (the quadratic mean
diameter at breast height). T (◦C year− 1 averaged): mean annual temperature,
EL: elevation (m), FT: forest type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen
Broadleaf Forest, SG: soil group, FA: Ferric Acrisols, OA: Orthic Acrisols, RF:
Rhodic Ferrasols. All statistics were calculated using cross-validation, 70 %
randomly split dataset for developing model system, and 30 % randomly split
dataset for validating, finally, all metrics averaged over 10 realizations. δ: the
variance function coefficient. Bold: The selected model system is based on cross-
validation statistics and the significance of its parameter p-values.

* Parameter with p value > 0.05. The second modeling system excluded fac-
tors that had parameters with a p-value > 0.05.

Table 6
Estimated parameters of modeling systems: Biomass Componenti = Averagei ×
Modifieri for simultaneous estimations of stand-level AGB, BGB and ABGB using
Weighted Nonlinear Seemingly Unrelated Regression (WNSUR) (based on the
entire dataset).

ID Modeling
system

Parameters Estimate ± Std. error RMSE
(Mg
ha− 1)

R2
adj.

1 AGB =

a1Vb11Hgb12 exp
(e11 / 100(T −

22.9) + (e12 /
1000) (EL −

613) + e13(FT
− 1.5) +
e14(SG − 1.7))

a1 2.005 ± 0.202 24.5 0.986
b11 1.003 ± 0.028
b12 − 0.3262 ± 0.0809
e11 4.987 ± 0.671
e12 0.4981 ± 0.0458
e13* − 0.09072 ± 0.05280
e14 0.1216 ± 0.0180

BGB =

a2Gb21Hgb22

exp(e21 / 100
(T − 22.9) +
(e22 / 1000)
(EL − 613) +
e23(FT − 1.5) +
e24 (SG − 1.7))

a2* 0.2375 ± 0.1625 8.4 0.771
b21 1.473 ± 0.172
b22* − 0.07703 ± 0.35150
e21 − 10.89 ± 3.26
e22 − 1.088 ± 0.237
e23* 0.05202 ± 0.28680
e24* − 0.1856 ± 0.1040

ABGB = AGB +

BGB
23.3 0.989

2 AGB =

a1Vb11Hgb12 exp
(e11 / 100(T −

22.9) + (e12 /
1000) (EL −

613) + e14(SG
− 1.7))

a1 2.163 ± 0.191 24.5 0.986
b11 1.016 ± 0.027
b12 − 0.3900 ± 0.0758
e11 4.785 + 0.634
e12 0.4674 ± 0.0434
e14 0.09325 ± 0.01340

BGB = a2Gb21

exp(e21 / 100(T
− 22.9) + (e22
/ 1000) (EL −

613))

a2 0.3312 ± 0.1061 6.0 0.885
b21 1.313 ± 0.086
e21 − 8.977 ± 2.405
e22 − 0.8707 ± 0.1867

ABGB = AGB +

BGB
23.9 0.989

Note: The general form: Biomass Componenti = Averagei × Modifieri + εi; where
Averagei = the ith independent model of AGB/BGB versus the stand variables of
G, V and Hg selected by cross-validation;Modifieri is the ith exponential function
that helps adjust the prediction values of the biomass component i based on the
environmental and ecological factors (T, EL, FT, SG) selected according to
FAMD. AGB is the aboveground biomass (Mg ha− 1), BGB is the belowground
biomass (Mg ha− 1), andABGB is the above- and belowground biomass (Mg ha− 1)
at stand-level. G is the stand basal area (m2 ha− 1), V is the volume of the stand
(m3 ha− 1), and Hg in m is the height of the tree with a Dg (the quadratic mean
diameter at breast height). T (◦C year− 1 averaged): Mean annual temperature,
EL: Elevation (m), FT: Forest type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen
Broadleaf Forest, SG: Soil group, FA: Ferric Acrisols, OA: Orthic Acrisols, RF:
Rhodic Ferrasols. Bold: The selected model system was based on cross-
validation statistics and the significance of its parameter p-values.

* Parameter with p value > 0.05. The second modeling system excluded fac-
tors that had parameters with a p-value > 0.05.
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variable V, and the corresponding results are presented in Table 7.
However, it should be noted that the modeling system utilizing only
variable V exhibited higher error metrics compared to the best modeling
system incorporating the complete set of optimized variables, which
included forest stand, environmental, and ecological factors such as G,
V, Hg, T, EL, and SG (Table 7 vs. Table 5).

3.3. MARS associated with stand, ecological, and environmental factors

Using cross-validation and exploring a range of ‘degree’ hyper-
parameter values based on FI, Bias, RMSE, andMAPE, the optimal MARS
equation system, which exhibited superior performance across these
four statistical measures, was determined with a ‘degree’ hyper-
parameter set to 2 (Table 8). The best modeling system incorporates nine
terms and uses five optimal predictors: V, Hg, G, T, and EL. These find-
ings, presented in Table 8, Table 9 and Fig. 6, indicate that the optimal
model is nonlinear, suggesting a complex relationship between the
predictors and responses. Table 9 represents the determination of the
hinge functions and their estimated coefficients of the optimal MARS
equation system, accompanied by the cross-validation metrics for each
predicted response. The FI values for MARS were 0.981, 0.956, and
0.982 for simultaneously predicting stand-level AGB, BGB, and ABGB,
respectively (Table 9).

3.4. DLAMs associated with stand, ecological and environmental factors

Various combinations of predictive covariates selected by FAMD,
including G, V, T, EL, FT, Hg, and SG, were utilized. Ten DLAMs were
created using these seven covariates (Table 10). Initially, DLAMs 1 was
developed with all seven predictive covariates. Subsequently, the co-
variate(s) with the lowest contribution (Fig. 5) was gradually eliminated

until only one key stand variable, with the highest impact on responses
of stand-level AGB, BGB, and ABGB, either G or V (Fig. 5), remained,
resulting in the modeling systems named DLAMs 9 and DLAMs 10,
respectively (Table 10).

Table 10 show the cross-validation metrics for the developed and
validated DLAMs (DLAMs 1–10). All ten DLAMs achieved high FIs above
0.95, indicating good fits (Table 10). After evaluating the goodness-of-fit
and error metrics – FI, Bias, RMSE andMAPE – and analyzing the plots of
fitted versus observed stand-level AGB, BGB, and ABGB for the ten
DLAMs (Fig. 7), it was determined that the best modeling system was
DLAMs 1, which incorporated seven predictive covariates including G,
V, T, EL, FT,Hg, and SG. This DLAMs 1 modeling system achieved a good
fit with FI of 0.986, 0.989, and 0.987, along with low MAPEs of 6.29 %,
4.27 %, and 5.28 % for the simultaneous prediction of stand-level AGB,
BGB, and ABGB, respectively (Table 10).

In practice, stand volume V is commonly the primary attribute found

Table 7
Estimated parameters of a modeling system for simultaneous estimation of stand-level AGB, BGB and ABGB versus only stand predictive variable of V using Weighted
Nonlinear Seemingly Unrelated Regression (WNSUR), including cross-validation results.

Modeling system Parameters Estimate ± Std. error FI Bias (%) RMSE (Mg ha− 1) MAPE (%)

AGB = a1Vb11 a1 0.6450 ± 0.0893 0.966 10.78 35.9 15.26
b11 1.053 ± 0.0210

BGB = a2Vb21 a2 0.8207 ± 0.0729 0.924 − 16.05 4.2 21.86
b21 0.6457 ± 0.0138

ABGB = AGB + BGB 0.967 6.91 38.0 11.21

Note: AGB is the aboveground biomass (Mg ha− 1), BGB is the belowground biomass (Mg ha− 1), and ABGB is the above- and belowground biomass (Mg ha− 1) at stand-
level. V is the stand volume (m3 ha− 1). Weight variable = 1 / Vδ. All parameters have a p-value < 0.0001. The modeling system parameters were estimated using the
entire dataset. All statistical metrics were calculated using cross-validation, 70 % randomly split dataset for developing model system, and 30 % randomly split dataset
for validating, finally, all metrics averaged over 10 realizations.

δ The variance function coefficient.

Table 8
Cross-validation metrics of Multivariate Adaptive Regression Splines (MARS)
modeling systems with different ‘degree’ values and ‘nprune’ set to NULL for
determining the optimal ‘degree’ in the modeling system associated with the
number of optimal terms and predictors.

Degree FI Bias
(%)

RMSE
(Mg
ha− 1)

MAPE
(%)

Selected
nprune
(terms)

Selected
predictors

1 0.975 − 0.85 35.3 10.30 7/9 4/7
2 0.982 ¡0.36 29.6 9.41 9/11 5/7
3 0.976 − 1.35 36.7 10.40 9/11 5/7
4 0.979 − 1.56 34.8 10.49 9/11 5/7
5 0.980 1.08 36.9 10.56 9/11 5/7
6 0.975 − 1.15 40.8 10.59 9/11 5/7

Note: The cross-validation statistics are for predicting stand-level above- and
belowground biomass (ABGB, Mg ha− 1); each repeating dataset was split
randomly into 70 % for training and 30 % for validation; finally, all statistics,
and error metrics averaged over 10 realizations. Bold: The optimal ‘degree’
value in the best MARS modeling.

Table 9
The estimated intercepts, coefficients and knot values for hinge functions of the
Multivariate Adaptive Regression Splines (MARS) best modeling system, based
on the entire dataset using five selected predictors (V, Hg, G, T, and EL) with
degree = 2, nprune = 9, for simultaneous prediction of stand-level AGB, BGB,
and ABGB, along with cross-validation statistics.

Terms (basis/hinge functions) AGB BGB ABGB

Coefficients

Intercept 402.9 12.96 415.86
h(17.1 − G) − 1.455 − 1.163 − 2.619
h(G − 17.1) 3.200 0.9495 4.150
h(554.1 − V) − 0.6917 0.007186 − 0.6846
h(V − 554.1) 0.9304 − 0.009269 0.9211
h(EL − 390) 0.04140 0.004565 0.04600
h(Hg − 15.7) − 20.20 − 0.02322 − 20.23
h(G − 17.1) × h(T − 21.7) − 1.0950 0.02627 − 1.069
h(G − 17.1) × h(21.7 − T) − 0.2731 − 0.01529 − 0.2884

Fit index (FI) and error metrics
FI 0.981 0.956 0.982
Bias (%) 0.73 − 7.11 − 0.36
RMSE (Mg ha− 1) 28.1 3.6 29.6
MAPE (%) 10.61 15.91 9.41

Note: h(Xzh − czh) or h(czh − Xzh) refers to the hinge function is an essential
component of the MARS modeling system and represents a specific mathemat-
ical form, where Xzh is the zth selected predictor such as G, V, EL, Hg and T in the
hth function, and ‘czh’ is a knot value associated with the zth predictor for the hth
function.
AGB (Mg ha− 1): aboveground biomass, BGB (Mg ha− 1): belowground biomass,
ABGB (Mg ha− 1): above- and belowground biomass at stand-level, Hg (m): the
height of the tree with a Dg (the quadratic mean diameter at breast height), G
(m2 ha− 1): stand basal area per hectare, V (m3 ha− 1): stand volume per hectare,
EL: elevation (m), T (◦C year− 1 averaged): mean annual temperature. All sta-
tistics and error metrics were calculated using the cross-validation, 70 %
randomly split dataset for training models, and 30 % randomly split dataset for
validating, and averaged over 10 realizations.
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in forest resource databases. This attribute varies based on forest sta-
tuses and can be influenced by various disturbance levels. Therefore,
DLAMs 10, which incorporated only the V covariate, was utilized to
simultaneously predict stand-level AGB, BGB, and ABGB to observed V
classes. Table 11 provides the predictions for the two biomass carbon
pools, aboveground and belowground, and their total in Vietnam’s
tropical forest statuses, with the biomass, carbon sequestration, and
equivalent CO2 (CO2e) absorption showing variations ranging from 13
to 994 Mg ha− 1, from 6 to 467 Mg ha− 1, and from 22 to 1714 Mg ha− 1,
respectively.

4. Discussion

4.1. DLAMs vs. WNSUR, MARS and ML modeling systems

Genc et al. (2023) highlighted that the use of ANN approaches for
estimating tree biomass surpassed the performance of regression meth-
odology. However, our study delved deeper by developing DLAMs using
MODNNs. These MODNNs exhibited enhanced robustness and innova-
tion compared to traditional ANNs. Our research also conducted a
comparative analysis, evaluating DLAMs against statistical approaches
such as the WNSUR and MARS methods. All three approaches – DLAMs,
WNSUR, and MARS – utilized multiple predictors encompassing forest
stand variables, ecological and environmental factors. They simulta-
neously predicted stand-level AGB, BGB, and ABGB, ensuring additivity,
within tropical mixed-species forests.

Table 12 compares the three optimal modeling systems – DLAMs,
MARS, and WNSUR based on cross-validation results. Four statistical
and error metrics – FI, Bias, RMSE, and MAPE were used for the com-
parison. The results showed that the DLAMs system outperforms the
other two modeling systems, with most of the four metrics being supe-
rior. Meanwhile, the MARS and WNSUR systems exhibited very similar
results across these metrics, indicating that neither approach was su-
perior in terms of goodness-of-fit or error metrics.

In forest biomass carbon prediction, minimizing percentage devia-
tion is crucial, as indicated by MAPE values. Consequently, when
comparing the modeling systems, this error metric was prioritized, fa-
voring the selection of models with lower MAPE values across the
components (Huy et al. 2022b). Using the best DLAMs 1, which
employed seven optimal covariates (G, V, T, EL, FT, Hg, and SG), the
MAPEs for simultaneously predicting stand-level AGB, BGB, and ABGB
decreased by 2.9 %, 14.0 %, and 2.4 %, respectively, compared to the
best WNSUR modeling system, which incorporated six optimal predic-
tive variables (G, V, T, EL, Hg, and SG) (Table 12). Specifically, the

Fig. 6. Depicts the Generalized R-Squared (GRSq) and R-Squared (RSq) of the
Multivariate Adaptive Regression Splines (MARS) modeling system as a func-
tion of the number of terms and used predictors. The plot highlights the selected
model with a degree of 2 that attained the highest GRSq/RSq value, achieved
with 9 terms (nprunes) and utilizing 5 predictors.

Table 10
The optimal Deep Learning Additive Models (DLAMs) of different combinations
of predictive covariates for simultaneously predicting stand-level AGB, BGB, and
ABGB — cross-validation statistics.

ID DLAMs
code

Combinations of
predictive
covariates

FI Bias
(%)

RMSE
(Mg
ha− 1)

MAPE
(%)

1. DLAMs
1

7 predictive covariates: G, V, T, EL, FT, Hg, SG
Optimal metrics
Predicting AGB 0.986 − 1.57 22.8 6.29
Predicting BGB 0.989 − 0.81 1.6 4.27
Predicting ABGB

= AGB + BGB
0.987 − 1.38 16.2 5.28

Mean metrics
Predicting AGB 0.982 − 1.17 26.3 7.55
Predicting BGB 0.981 0.15 2.3 4.94
Predicting ABGB

= AGB + BGB
0.983 − 0.86 18.7 6.57

2. DLAMs 2 6 predictive covariates: G, V, T, EL, FT, Hg
Optimal metrics
Predicting AGB 0.976 − 2.61 22.4 6.94
Predicting BGB 0.989 1.84 1.5 3.53
Predicting ABGB

= AGB + BGB
0.980 − 1.88 15.9 5.89

Mean metrics
Predicting AGB 0.978 − 0.81 30.5 7.53
Predicting BGB 0.968 − 0.44 2.9 6.24
Predicting ABGB

= AGB + BGB
0.980 − 0.58 21.7 6.63

3. DLAMs 3 6 predictive covariates: G, V, T, EL, Hg, SG
Optimal metrics
Predicting AGB 0.992 1.00 18.2 5.96
Predicting BGB 0.989 − 0.13 2.0 4.48
Predicting ABGB

= AGB + BGB
0.993 1.00 13.0 5.29

Mean metrics
Predicting AGB 0.985 − 1.27 23.9 7.43
Predicting BGB 0.978 − 0.94 2.1 4.76
Predicting ABGB

= AGB + BGB
0.986 − 1.07 17.0 6.51

4. DLAMs 4 5 predictive covariates: G, V, T, EL, FT
Optimal metrics
Predicting AGB 0.987 1.17 25.3 4.61
Predicting BGB 0.945 − 0.42 4.3 6.16
Predicting ABGB

= AGB + BGB
0.987 1.10 18.1 4.32

Mean metrics
Predicting AGB 0.975 1.27 29.1 8.16
Predicting BGB 0.971 1.88 2.8 6.10
Predicting ABGB

= AGB + BGB
0.978 1.51 20.7 7.23

5. DLAMs 5 5 predictive covariates: G, V, T, EL, Hg
Optimal metrics
Predicting AGB 0.986 − 1.27 19.4 6.07
Predicting BGB 0.984 0.72 2.0 4.99
Predicting ABGB

= AGB + BGB
0.988 − 0.84 13.8 5.12

Mean metrics
Predicting AGB 0.979 − 0.44 26.3 7.37
Predicting BGB 0.980 0.75 2.3 5.45
Predicting ABGB

= AGB + BGB
0.981 − 0.13 18.6 6.49

6. DLAMs 6 4 predictive covariates: G, V, T, EL
Optimal metrics
Predicting AGB 0.986 − 0.68 24.7 6.07
Predicting BGB 0.995 − 0.90 1.1 3.10
Predicting ABGB

= AGB + BGB
0.988 − 0.66 17.5 5.22

Mean metrics
Predicting AGB 0.971 0.44 31.8 7.57
Predicting BGB 0.941 0.54 3.7 5.67
Predicting ABGB

= AGB + BGB
0.971 0.58 22.7 6.75

7. DLAMs 7 3 predictive covariates: G, V, T
Optimal metrics
Predicting AGB 0.985 − 0.43 19.0 6.98
Predicting BGB 0.994 1.01 1.1 2.86

(continued on next page)
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MAPEs from the DLAMs 1 reduced by 4.3 %, 11.6 %, and 4.1 %
compared to the best MARS system, which included five optimal pre-
dictive variables (G, V, T, EL, and Hg) for simultaneously predicting
stand-level AGB, BGB, and ABGB, respectively (Table 12). Fig. 8 dem-
onstrates a clear improvement in the fits of the DLAMs approach
compared to the WNSUR and MARS methods. The DLAMs exhibit
noticeably better fits, indicating its better performance in capturing the
relationship between predictors and forest biomass components.

When comparing the V-based modeling systems, DLAMs 10
(Table 10) outperformed WNSUR (Table 7) across 7 out of 12
component-metrics combinations from cross-validation. Additionally,
DLAMs 10 exhibited improved MAPE values across all three component
models compared to the WNSUR V-based system, highlighting that

reductions in MAPE are essential for accurate forest biomass predictions.
Consequently, the DLAMs system demonstrated a superior goodness-of-
fit relative to the WNSUR modeling system when using a sole V pre-
dictor. However, the WNSUR V-based system is simpler to apply and has
slightly lower reliability than DLAMs 10. Therefore, WNSUR models are
recommended for parsimony when using only the V predictor.

The results presented here differ from the findings of Qin et al.
(2023), who suggested that DL modeling has lower reliability than
regression modeling when using the same predictive variables. Ac-
cording to their study, DL modeling exhibits high reliability only when
incorporating many predictive covariates. On the contrary, we believe
this discrepancy may be related to the design of the DNN or MODNNs,
including selecting appropriate structures, algorithms, and hyper-
parameters tailored to the research data.

The comparison results between the DLAMs approach and regression
modeling, such as WNSUR, in this study align with several publications
by Ercanli (2020) and Huy et al. (2022b, 2024), indicating that DL
modeling demonstrates significant advantages over the regression
approach. One notable advantage of the DL approach is that it does not
require finding an optimal function like traditional regression methods.
This is particularly advantageous because the relationships between
tropical rainforest biomass and ecological environmental factors are
complex and poorly understood. Through DNN, DL modeling can detect
patterns in these relationships and make predictions with minor errors.
Additionally, DL modeling does not rely on normally distributed vari-
ables and does not require handling heteroscedasticity issues in pre-
dicted variables. It can also handle nominal categorical variables by
encoding them into binary vectors (Huy et al. 2022b, 2024; Qin et al.
2023).

The MARS modeling system shares the same advantages as DLAMs,
being a non-parametric regression approach, which offers distinct ad-
vantages compared to parameter regression methods like WNSUR.
MARS does not require the assumption of variable normality and can
identify suitable functional forms (Laurin et al. 2016). Like DLAMs, it
can also handle numeric and nominal categorical variables, exhibiting a
flexible and versatile form (Yasmirullah et al. 2021). MARS is particu-
larly effective when dealing with many responses and predictor vari-
ables in the modeling process (Koc and Bozdogan 2015). This study also
examined the additivity of simultaneously predicted responses from the
MARS equation systems, resulting in the relationship ABGB = AGB +

BGB being verified. Therefore, MARS has found applications in various
multivariate regression models and has been reported to outperform
other modeling algorithms in certain scenarios (Arjasakusuma et al.
2020). The MARS method excels automatically selecting the number of
significant predictive variables — a function that surpasses DLAMs.
Moreover, it develops nonlinear relationships by selecting hinge func-
tions, which are a key component in the MARS model.

In contrast, this poses a challenge for parametric regression like
WNSUR, where determining the appropriate number of predictors and
capturing nonlinear relationships requires more manual intervention.
By looking at cross-validation data, we saw that most error measure-
ments for MARS were the same as those for WNSUR (Table 12). This
suggests that MARS and WNSUR generally predict with similar accu-
racy. However, MARS has its strengths, showing potential in creating
models that predict multiple connected results simultaneously. The
MARS approach utilizes complex input data with relationships that are
hard to find.

Furthermore, a recent study utilized ML techniques to predict the
total stand biomass, including both aboveground and belowground
components, in natural coniferous-broadleaved mixed forests in China.
The study incorporated multiple variables, such as stand characteristics,
climate, and soil factors, as predictors, achieving promising results with
an R2 value of 0.89 (He et al. 2023). In our study, the use of DLAMs
demonstrated significantly better performance than ML, with an FI (R2)
exceeding 0.98. Additionally, DLAMs enable simultaneous predictions
of aboveground, belowground, and total stand-level biomass in contrast

Table 10 (continued )

ID DLAMs
code

Combinations of
predictive
covariates

FI Bias
(%)

RMSE
(Mg
ha− 1)

MAPE
(%)

Predicting ABGB
= AGB + BGB

0.988 − 0.11 13.5 6.04

Mean metrics
Predicting AGB 0.981 0.27 27.5 7.90
Predicting BGB 0.986 0.59 2.0 4.37
Predicting ABGB

= AGB + BGB
0.984 0.46 19.5 6.91

8. DLAMs 8 2 predictive covariates: G, V
Optimal metrics
Predicting AGB 0.963 − 0.15 44.7 7.24
Predicting BGB 0.997 0.31 1.0 3.44
Predicting ABGB

= AGB + BGB
0.968 0.08 31.6 6.05

Mean metrics
Predicting AGB 0.949 0.14 47.0 9.23
Predicting BGB 0.988 0.38 1.8 4.11
Predicting ABGB

= AGB + BGB
0.957 0.37 33.3 8.01

9. DLAMs 9 1 predictive variable: G
Optimal metrics
Predicting AGB 0.977 1.52 33.4 13.52
Predicting BGB 0.983 − 0.68 2.3 9.34
Predicting ABGB

= AGB + BGB
0.980 1.50 23.7 12.65

Mean metrics
Predicting AGB 0.931 3.72 57.1 17.69
Predicting BGB 0.981 2.16 2.4 10.92
Predicting ABGB

= AGB + BGB
0.942 3.88 40.4 16.42

10. DLAMs
10

1 predictive variable: V
Optimal metrics
Predicting AGB 0.973 3.43 33.8 8.59
Predicting BGB 0.947 1.60 4.1 9.23
Predicting ABGB

= AGB + BGB
0.973 3.33 24.1 8.12

Mean metrics
Predicting AGB 0.960 − 2.22 41.8 10.48
Predicting BGB 0.864 − 1.50 6.2 10.39
Predicting ABGB

= AGB + BGB
0.959 − 1.95 29.9 9.91

Note: AGB: aboveground biomass (Mg ha− 1), BGB: belowground biomass (Mg
ha− 1), and ABGB above- and belowground biomass (Mg ha− 1) at stand-level. G:
Stand basal area per hectare (m2 ha− 1), V: stand volume per hectare (m3 ha− 1),
T: mean annual temperature (◦C year− 1 averaged), EL: elevation (m), FT: forest
type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest, Hg (m):
height of the tree with a Dg (the quadratic mean diameter at breast height), SG:
soil group, FA: Ferric Acrisols, OA: Orthic Acrisols, RF: Rhodic Ferrasols.
Selection of modeling systems through cross-validation involved 10 repetitions,
with the dataset split randomly into 70 % for training and 30 % for validation
each time; the optimal DLAMs was selected based on its performance across 10
cross-validation folds, and its statistics and error metrics were computed to
assess its effectiveness in the validation process; and the mean metrics were then
calculated across the validation folds. Bold: The best-selected DLAMs modeling
system.
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to ML techniques, with typically predict these components or totals
separately.

In recent years, the application of DL models has successfully
addressed various challenges across multiple fields, as mentioned by
Sarker (2021). Nevertheless, the development and application of DL
models in terms of biometrics, forest carbon biomass dynamics, and
forest ecology modeling are still in their early stages. Given the
numerous advantages of DLmodeling in general, as demonstrated in this
study, it is crucial to recognize DL as a significant alternative approach
for capturing complex relationships within tropical forest biomass car-
bon and ecology. Both parametric and non-parametric regressions have
their advantages, but DL has unique capabilities that make it particu-
larly well-suited for handling the complexities associated with these
relationships. DL’s ability to automatically learn intricate patterns and

representations from data and its capacity to model highly nonlinear
relationships makes it a powerful tool for various predictive modeling
tasks.

In the realm of DL methodology for regression, it’s important to
acknowledge that while MODNNs techniques facilitate the development
of DLAMs that outperform equation systems produced by conventional
regression methods, they do have certain limitations. For instance, they
cannot automatically select significant predictive covariates for
modeling DLAMs, and the thorough examination and selection of the
appropriate MODNNs architecture that determines the reliability and
error of the DLAMs can be time-consuming.

Fig. 7. Plots of fitted vs. observed values of DLAMs for simultaneous estimations of stand-level AGB, BGB, and ABGB using different combinations of predictors
selected by FAMD analysis, based on the entire dataset.
Note: AGB: aboveground biomass (Mg ha− 1), BGB: belowground biomass (Mg ha− 1), and ABGB: above- and belowground biomass (Mg ha− 1) at stand-level. G: stand
basal area per hectare (m2 ha− 1), V: stand volume per hectare (m3 ha− 1), T: mean annual temperature (◦C year− 1 averaged), EL: elevation (m), FT: forest type, DDF:
Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest, Hg (m): height of the tree with a Dg (the quadratic mean diameter at breast height), SG: soil group, FA:
Ferric Acrisols, OA: Orthic Acrisols, RF: Rhodic Ferrasols.

B. Huy et al. Science of the Total Environment 958 (2025) 177869 

14 



4.2. Designing MODNNs to achieve greater reliability of DLAMs

In the context of utilizing DLAMs to predict stand-level AGB, BGB,
and ABGB simultaneously, thoroughly examining and selecting appro-
priate MODNNs that align with the specific research data is crucial.
Different MODNNs designs result in notable variations in the reliability
and error of the DLAMs.

Designing MODNNs includes experimenting with the dataset across
key components such as 1) Selecting a scaling method for predictive
covariates to ensure they have an equal impact on the response vari-
ables; 2) The selection of an optimization algorithm is crucial (Qin et al.
2023; Huy et al. 2024;) as it plays a significant role in ensuring that
DLAMs is capable of identifying the best-fitting modeling system.
Alongside this, choosing an appropriate learning rate that suits the input
data is also important; 3) The selection of activation functions plays a
crucial role, especially when dealing with nonlinear relationships be-
tween forest biomass and predictor variables in ecological environ-
ments. Therefore, in many cases, the Rectified Linear Unit (ReLU)
activation function (Huy et al. 2022b, 2024; Qin et al. 2023) is suitable

for hidden layers, as it can capture complex patterns effectively.
Simultaneously, a linear activation function is appropriate for the output
layer, ensuring a close linear relationship between observed and pre-
dicted output values; 4) Designing the structure of MODNNs with the
adjustment of the number of hidden layers and neurons per hidden layer
is crucial (Ercanli 2020; Ogana and Ercanli 2021; Huy et al. 2022b,
2024; Qin et al. 2023) for different datasets. Conducting investigations
to select the appropriate number of hidden layers and neurons signifi-
cantly influences the reliability of predictions for the output variables; 5)
Hyperparameters such as epoch, batch size, and patience need to be
adjusted (Huy et al. 2022b, 2024; Qin et al. 2023; Seely et al. 2023)
according to the observed data and the level of relationship between the
response variables and covariates. These hyperparameters determine
how the data is utilized, the number of iterations the computer learns,
and when to stop appropriately to avoid overfitting.

Fig. 7. (continued).
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Fig. 7. (continued).

B. Huy et al. Science of the Total Environment 958 (2025) 177869 

16 



4.3. Stand, ecological and environmental factors affect AGB, BGB and
ABGB at stand-level in tropical forests

Examining the influence of predictive covariates revealed that forest
stand variables, G, V, Hg, and FT, have the most significant impact.
Environmental and ecological variables such as T, EL, and SG have a
pronounced impact on the carbon accumulation of tropical forests.
Variations in T induced by climate change impact tree growth and
biomass accumulation in forests. T, which is related to photosynthetic
intensity for the accumulation of plant biomass (Law et al. 2002), is an
important climatic factor that should be considered for forest biomass
(Ma et al. 2023).

On the other hand, in tropical regions, the EL factor essentially
represents different climatic subzones. It varies and influences climate-
related factors such as atmospheric changes subsequently impacting
forest biomass accumulation. Additionally, forest soil plays a central role
in shaping diverse forest types and species composition, thus influencing
the variable capacity for biomass accumulation. These findings are in
line with the observations of Pan et al. (2013), highlighting that forest
biomass is a complex characteristic influenced by factors such as dis-
tribution, structure, and ecological processes within the forest
ecosystem. Additionally, the dynamics of forest biomass are influenced
by topographic factors (Salinas-Melgoza et al. 2018), such as altitude
and climate conditions, with T being a particularly significant variable
in this regard (Qian et al. 2021). The findings of this study align with the
observations made by Balima et al. (2021), which highlight that forest
stand variables (specifically,G and V variables in this study) have amore
significant influence on the variation of forest biomass carbon seques-
tration compared to climatic factors (such as T factor in this study)
(Fig. 5).

The selection of the best DLAMs (DLAMs 1) involved the inclusion of
the optimal seven predictive covariates: G, V, T, EL, FT, Hg, and SG, as
shown in Table 10. This choice was consistent with the result of the
FAMD analysis (Fig. 5), which identified these predictors as having the
highest contributions to the variations of the response variables, namely
stand-level AGB, BGB, and ABGB.

4.4. The variability of stand-level AGB and BGB in tropical forests

According to IPCC (2003), the average stand-level AGB of tropical
rainforests in Asia is 280 Mg ha− 1, spanning from 120 to 680 Mg ha− 1.
Specifically, this AGB varies in Vietnam from 11 Mg ha− 1 to 917 Mg
ha− 1 (Table 11), averaging 201 Mg ha− 1 (Table 1). These figures suggest
that natural tropical rainforests in Vietnam have undergone varying
degrees of disturbance, with certain regions showing significantly
reduced biomass stocks. However, it is worth noting that there are also
areas in Vietnam where forests remain well-preserved, boasting biomass
stocks exceeding 900 Mg ha− 1. This surpasses the maximum value

provided by the IPCC (2003), which is 680 Mg ha− 1, underscoring the
existence of forested regions with exceptionally high biomass stocks.

In Costa Rica, secondary tropical forests also display notable vari-
ability in AGB, spanning from 1.7 to 409 Mg ha− 1 (Becknell and Powers
2014). While the variability is less pronounced than Vietnam’s, the
primary cause remains similar mainly attributed to historical distur-
bances (Becknell and Powers 2014) or land use factors (Yang et al.
2014). However, in Costa Rica, sustainably managed production forests
demonstrate an average AGB of 329 Mg ha− 1, surpassing that of primary
forests (296 Mg ha− 1) (Vila et al. 2021). Meanwhile, Colombia’s tropical
rainforests boast the highest AGB sequestration, with a significant stock
of 542 Mg ha− 1 (Calderon-Balcazar et al. 2023). These AGB values
notably exceed those observed in disturbed forests in Vietnam (201 Mg
ha− 1).

In the tropical lowlands of Sumatra, Indonesia, the combined AGB
and BGB average 384 Mg ha− 1 (Kotowska et al. 2015). In contrast, the
biomass sequestration in these components (ABGB) within the tropical
forests of Vietnam varies widely, ranging from 13 Mg ha− 1 to 994 Mg
ha− 1 (Table 11), with an average of 225 Mg ha− 1 (Table 1). This com-
parison highlights significant variability in the stand-level AGB and BGB
of Vietnamese forests, which, on average, is lower than that of forested
regions in Southeast Asia, such as Indonesia. According to Kotowska
et al. (2015), AGB and BGB in monoculture rubber and oil palm plan-
tations were reported to be 78 Mg ha− 1 and 50 Mg ha− 1, respectively.
Consequently, converting natural tropical forests into monoculture
rubber plantations, a trend observed in developing tropical countries
over recent decades, leads to emissions of approximately 254 Mg ha− 1 in
CO2e in Vietnam and Indonesia.

Carbon sequestration in both stand-level AGB and BGB ranges from
6.0 Mg ha− 1 to 467.0 Mg ha− 1 in various disturbed forest statuses in
Vietnam (Table 11). The average carbon sequestration is estimated to be
105.8 Mg ha− 1, calculated using an averaged ABGB of 225 Mg ha− 1

(Table 1) and a default carbon fraction (CF) of 0.47 (IPCC 2006).
Conversely, Karmakar et al. (2020) disclosed that the average carbon
accumulation in these pools within tropical degraded DDF in India,
which have undergone recovery over three decades, amounts to 18.4
Mg ha− 1. In contrast, moist central African forests exhibited a total
carbon accumulation of 208.1 Mg ha− 1 in the AGB and BGB
(Ekoungoulou et al. 2015), while a semi-arid forest ecosystem of India
displayed 63.5 Mg ha− 1 (Meena et al. 2019).

This emphasizes the considerable diversity in carbon accumulation
within disturbed tropical forests in Vietnam, which, on average, sur-
passes that of degraded natural forests and semi-arid forests in neigh-
boring countries but falls short of tropical African forests. Tropical
natural forests in Vietnam are typically managed for multiple purposes,
and it is ideal to pursue these objectives simultaneously. Carbon
sequestration and storage optimization are critical forest management
goals, particularly given climate change. Hence, it is imperative to

Fig. 7. (continued).
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consider the effects of forest harvesting and disturbances on carbon
stock and dynamics to formulate projections for potential carbon
sequestration and storage.

4.5. Application of DLAMs

Based on the results of the cross-validations comparisons, the DLAMs
are recommended as an alternative to conventional statistical nonlinear
regressions such as WNSUR and MARS, respectively, for simultaneously

predicting AGB, BGB and their sum ABGB at the stand-level in tropical
forests. Furthermore, using DLAMs to predict biomass carbon in tropical
mixed-species forests at the stand-level can yield cost savings when
compared to tree-level biomass equations, primarily because there is no
requirement to identify tree species or species-specific wd variables.

One of the best-saved results from the DLAMs 1–10 can be selected
for practical applications. A Python script can be executed to import the
chosen DLAMs, and the newly provided dataset file contains the values
of the predictive covariates used in the selected DLAMs. This will allow
for predicting AGB, BGB, and ABGB simultaneously while ensuring
additivity at the stand-level of tropical forests.

The selection of which DLAMs to use should depend on the avail-
ability of resources for data collection of predictive covariates and cost-
effectiveness. However, the best DLAMs, DLAMs 1, with optimal seven
predictive variables (G, V, T, EL, FT, Hg, and SG), is recommended, as it
has demonstrated the highest level of reliability and the lowest predic-
tion errors when simultaneously predicting stand-level AGB, BGB, and
ABGB. Furthermore, since the national forest database mainly includes
the attribute of stand volume V, DLAMs 10 can be selected to convert
attribute V to stand-level biomass. On the other hand, in certain areas
where local community participation is involved in forest carbon mea-
surement and monitoring, and the observed attribute of the forest is
simplified to include only one variable, d, it is recommended to utilize
DLAMs 9 with only the G predictor (derived from the d measurement).
However, using DLAMs 9–10 with a single predictor variable, G or V,
will generally result in lower reliability than the best DLAMs 1 model.
Table 10 provides the goodness-of-fit and error metrics for these
modeling systems.

DLAMs can be applied to small areas, such as a forest block spanning
a few hectares, or to larger ecological regions, territories, or even
countries. A few purposive sample plots can be established for the forest
block to measure and collect the predictor variables. On the other hand,
when DLAMs are applied to larger areas, it is necessary to establish a
systematic sample plot system tomeasure and collect predictor variables
tailored to the specific requirements of the selected DLAMs. The sample
plots should be stratified based on forest type and forest status, and the
number of plots should be sufficient to ensure the desired level of pre-
cision as defined by IPCC (2003).

When applying the best DLAMs 1 with the optimal seven predictor
variables (G, V, T, EL, FT, Hg, and SG), the variables to be measured in
each sample plot are d and h. d is measured to derive G, while both d and
h are used to derive V and Hg is calculated based on Dg. The factor T can
be extracted based on the coordinates of each sample plot from a raster
file with a spatial resolution of 30 s (~1 km), which contains the mean
annual temperature (Fick and Hijmans 2017). The EL factor is recorded
in each plot and the SG predictor should be extracted from the soil map
of FAO-UNESCO (2005). However, collecting data from the sample plot
is unnecessary if the DLAMs 10 is applied with a single variable, V.
Instead, existing and updated forest databases at the regional or national
level, with the attribute V categorized by forest type and forest status,
can be utilized. If the DLAMs 9 is applied with a single variable, G, only
the measurement of variable d is required for each sample plot. A user-
friendly system, including an executable package and a user guide, is
available for download to facilitate efficient and practical applications at
https://baohuy-frem.org/deep-learning-for-forest-biomass-prediction/.

The development and application of stand-level biomass models
greatly contribute to studying tropical forest ecosystem productivity and
carbon cycles at multiple scales (Xin et al. 2023). Furthermore, using
stand-level biomass carbon models reduces dependence on specialized
resources compared to implementing tree-level allometric models.
Specifically, the utilization of the advanced DLAMs 1modeling system at
the stand-level eliminates the need for species identification, which is
otherwise required for converting into tree wood density values used in
tree-level biomass equations (Huy et al. 2016a, 2016b; Kralicek et al.
2017) (Table 2) for tropical mixed-species forests. However, it should be
noted that using the DLAMs at the stand-level as a supplement can

Table 11
Simultaneous predictions of stand-level AGB, BGB, ABGB, Carbon, and CO2
equivalent (CO2e) by stand volume V classes using DLAMs 10.

ID V (m3

ha− 1)
AGB
(Mg
ha− 1)

BGB
(Mg
ha− 1)

ABGB
(Mg
ha− 1)

Carbon
(Mg ha− 1)

CO2e
(Mg
ha− 1)

1 10 10.9 1.8 12.8 6.0 22.0
2 30 28.6 5.3 33.9 15.9 58.5
3 50 45.5 8.4 53.9 25.3 93.0
4 70 61.5 11.7 73.2 34.4 126.2
5 90 76.9 14.8 91.8 43.1 158.3
6 110 94.0 17.7 111.6 52.5 192.6
7 130 111.2 20.6 131.8 61.9 227.3
8 150 131.4 23.3 154.8 72.7 266.9
9 170 155.9 24.1 179.9 84.6 310.4
10 190 178.8 24.1 202.8 95.3 349.8
11 210 194.6 24.0 218.7 102.8 377.2
12 230 210.4 25.1 235.5 110.7 406.1
13 250 226.2 26.2 252.4 118.6 435.4
14 270 242.2 27.3 269.5 126.7 464.8
15 290 258.2 28.5 286.7 134.8 494.6
16 310 274.4 29.8 304.2 143.0 524.7
17 330 291.0 31.1 322.1 151.4 555.6
18 350 308.0 32.5 340.5 160.0 587.3
19 370 325.1 33.9 359.0 168.8 619.3
20 390 342.2 35.4 377.6 177.5 651.3
21 410 359.4 36.8 396.1 186.2 683.3
22 430 376.5 38.2 414.7 194.9 715.3
23 450 393.6 39.7 433.3 203.6 747.3
24 470 410.7 41.1 451.8 212.3 779.3
25 490 427.8 42.5 470.4 221.1 811.3
26 510 445.0 43.9 488.9 229.8 843.3
27 530 462.1 45.4 507.5 238.5 875.3
28 550 479.2 46.8 526.0 247.2 907.3
29 570 496.3 48.2 544.6 255.9 939.3
30 590 513.4 49.7 563.1 264.7 971.3
31 610 530.6 51.1 581.7 273.4 1003.3
32 630 547.7 52.5 600.2 282.1 1035.3
33 650 565.0 53.9 618.8 290.8 1067.4
34 670 582.5 55.0 637.6 299.7 1099.7
35 690 600.1 56.2 656.3 308.5 1132.0
36 710 617.7 57.3 675.0 317.3 1164.4
37 730 635.3 58.4 693.8 326.1 1196.7
38 750 652.9 59.6 712.5 334.9 1229.0
39 770 670.5 60.7 731.2 343.7 1261.3
40 790 688.1 61.9 750.0 352.5 1293.6
41 810 705.7 63.0 768.7 361.3 1326.0
42 830 723.3 64.2 787.5 370.1 1358.3
43 850 740.9 65.3 806.2 378.9 1390.6
44 870 758.5 66.5 824.9 387.7 1422.9
45 890 776.1 67.6 843.7 396.5 1455.2
46 910 793.6 68.7 862.4 405.3 1487.5
47 930 811.2 69.9 881.1 414.1 1519.9
48 950 828.8 71.0 899.9 422.9 1552.2
49 970 846.4 72.2 918.6 431.7 1584.5
50 990 864.0 73.3 937.3 440.5 1616.8
51 1010 881.6 74.5 956.1 449.4 1649.1
52 1030 899.2 75.6 974.8 458.2 1681.5
53 1050 916.8 76.8 993.5 467.0 1713.8

Note: AGB is the aboveground biomass, BGB is the belowground biomass, and
ABGB is the above- and belowground biomass at stand-level. Carbon is the
carbon sequestration in both above- and belowground biomass = 0.47 × ABGB,
where 0.47 is the default carbon fraction (CF) of IPCC (2006). CO2e is the
equivalent CO2 absorption in both above- and belowground carbon pools= 3.67
× Carbon.
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slightly increase the error compared to using only the WNSUR or, MARS
or DL modeling systems at the tree-level to predict tree AGB, BGB, and
their total simultaneously.

5. Conclusions

This study offered compelling evidence that the use of innovative
DLAMs substantially enhanced the reliability of simultaneously pre-
dicting AGB, BGB, and their sum ABGB while ensuring additivity at
stand-level in tropical forests, surpassing conventional simultaneous
modeling systems that employed statistical nonlinear simultaneous re-
gressions, such as WNSUR and MARS, respectively. Furthermore, using
DLAMs to predict tropical mixed-species forest biomass carbon at the
stand-level will reduce resource costs compared to tree-level biomass
equations because there is no requirement to identify tree species or
species-specific wd predictive variables.

DLAMs 1 emerged as the best modeling system for simultaneously

predicting stand-level AGB, BGB, and ABGB, and integrating seven
optimal predictive covariates (G, V, T, EL, FT, Hg, and SG). It demon-
strated the highest level of reliability and the lowest prediction errors,
unequivocally affirming its superior performance. The best DLAMs
(DLAMs 1) achieved FIs of 0.986, 0.989 and 0.987, along with MAPEs of
6.3 %, 4.3 % and 5.3 % for the simultaneous predictions of stand-level
AGB, BGB and ABGB, respectively.

We recommend using DLAMs 10 to simplify the process to convert
the V attribute from the updated national forest database into biomass
carbon pools. On the other hand, when the local community participates
in forest carbon measurement and monitoring, and only the simple tree
variable d is measured, it is advised to utilize DLAMs 9 with only the G
predictor. However, using DLAMs 9 and 10 will generally result in lower
reliability.

In the two biomass carbon pools, aboveground and belowground, in
Vietnam’s tropical forest statuses, the biomass, carbon sequestration,
and CO2e absorption exhibit variations, ranging from 13 to 994 Mg

Table 12
Comparison of cross-validation results for simultaneously predicting stand-level AGB, BGB and ABGB using different three approaches: Deep Learning Additive Models
(DLAMs), Multivariate Adaptive Regression Splines (MARS) andWeighted Non-Linear Seemingly Unrelated Regression (WNSUR)modeling systems, with their optimal
predictive covariates.

ID Methods Optimal predictors Modeling systems FI Bias
(%)

RMSE (Mg
ha− 1)

MAPE
(%)

1 DLAMs 7 predictive covariates: G, V, T, EL,
FT, Hg, SG

The best modeling system (DLAMs 1)
The best model of AGB 0.986 − 1.57 22.8 6.29
The best model of BGB 0.989 − 0.81 1.6 4.27
The best model of ABGB = AGB + BGB 0.987 − 1.38 16.2 5.28

2 MARS 5 predictive covariates: G, V, T, EL,
Hg

The best modeling system
The best model of AGB 0.981 0.73 28.1 10.61
The best model of BGB 0.956 − 7.11 3.6 15.91
The best model of ABGB = AGB + BGB 0.982 − 0.36 29.6 9.41

3 WNSUR 6 predictive covariates: G, V, T, EL,
Hg, SG

The best modeling system
AGB = a1Vb11Hgb12 exp(e11 / 100(T − 22.9) + (e12 / 1000)(EL −

613) + e14(SG − 1.7))
0.986 2.88 28.3 9.17

BGB = a2Gb21 exp(e21 / 100(T − 22.9) + (e22 / 1000)(EL − 613)) 0.886 − 3.30 4.2 18.31
ABGB = AGB + BGB 0.989 1.99 29.1 7.71

Note: AGB is the aboveground biomass (Mg ha− 1), BGB is the belowground biomass (Mg ha− 1), and ABGB is the above- and belowground biomass (Mg ha− 1) at stand-
level. G (m2 ha− 1): stand basal area per hectare, V (m3 ha− 1): stand volume per hectare, T (◦C year-averaged): mean annual temperature, EL: elevation (m), FT: forest
type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest, Hg (m): the height of the tree with a Dg (the quadratic mean diameter at breast height), SG: soil
group, FA: Ferric Acrisols, OA: Orthic Acrisols, RF: Rhodic Ferrasols. All statistics were calculated using cross-validation, 70 % randomly split dataset for training
models, and 30 % randomly split dataset for validating; finally, all statistics and error metrics averaged over 10 realizations; the optimal DLAMs was selected based on
its performance across 10 cross-validation folds, and its statistics and error metrics were computed to assess its effectiveness in the validation process.

Fig. 8. Comparison of predicted vs. observed biomass components of AGB (aboveground biomass), BGB (belowground biomass), and ABGB (above- and below-
ground biomass) at stand-level by the Deep Learning Additive Models (DLAMs) with its seven optimal predictive covariates (G, V, T, EL, FT, Hg, and SG), the
Multivariate Adaptive Regression Splines (MARS) modeling system with its five optimal predictive covariates (G, V, T, EL, and Hg), and the Weighted Non-Linear
Seemingly Unrelated Regression (WNSUR) modeling system with its six optimal predictive covariates (G, V, T, EL, Hg, and SG).
Note: G (m2 ha− 1): stand basal area per hectare; V (m3 ha− 1): stand volume per hectare; T (◦C year-averaged): mean annual temperature; EL: elevation (m); FT: forest
type, DDF: Dry Dipterocarp Forest, EBLF: Evergreen Broadleaf Forest; Hg (m): the height of the tree with a Dg (the quadratic mean diameter at breast height); SG: soil
group, FA: Ferric Acrisols, OA: Orthic Acrisols, RF: Rhodic Ferrasols.
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ha− 1, from 6 to 467 Mg ha− 1, and from 22 to 1714 Mg ha− 1,
respectively.

To align with the specific observed dataset and account for the
varying relationships among surveyed variables, conducting experi-
ments in designing the architecture, selecting algorithms, and tuning
hyperparameters for MODNNs is crucial. The appropriate selection of
these components significantly enhances the reliability of predictions for
the multi-output variables within DLAMs.
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