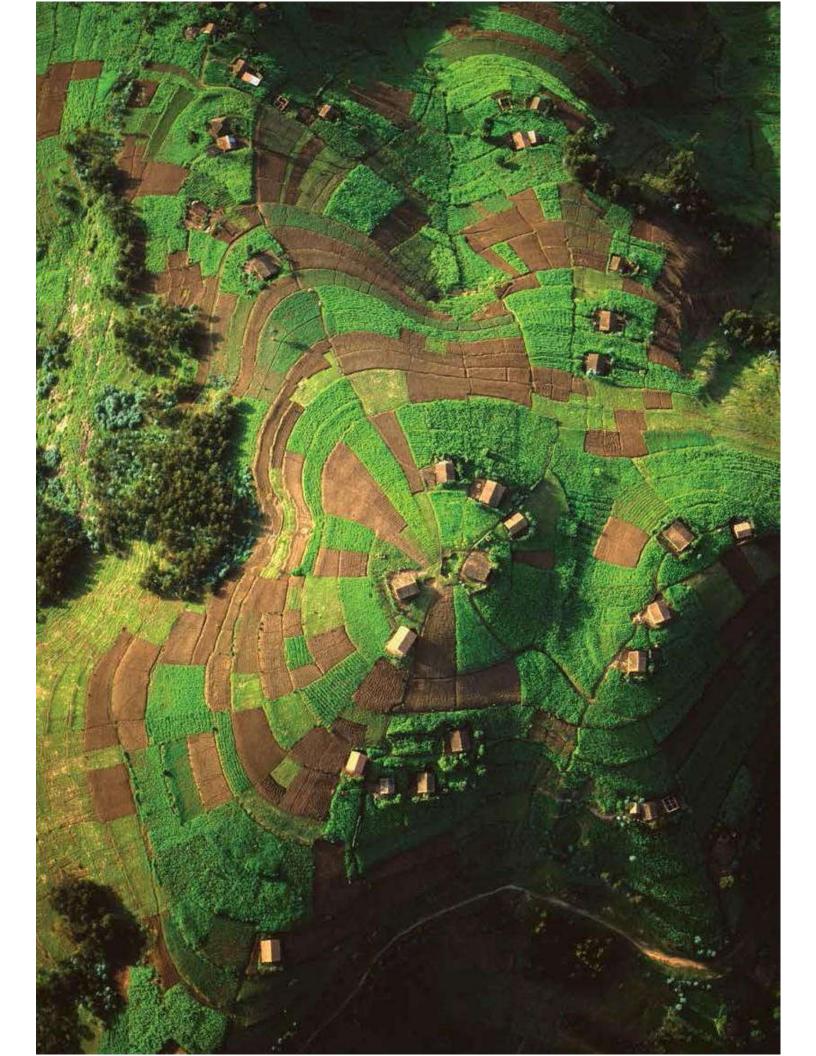


www.wca2014.org

COMPENDIUM OF ABSTRACTS

COMPENDIUM OF ABSTRACTS


10-13 FEBRUARY 2014 NEW DELHI, INDIA

Abstracts of the 3rd World Congress on Agroforestry Trees for Life: Accelerating the Impact of Agroforestry

ISBN: 978-92-9059-372-0

The views expressed in this publication are those of the author(s) and not necessarily those of the World Agroforestry Centre.

Articles appearing in this publication may be quoted or reproduced without charge, provided the source is acknowledged.

All images remain the sole property of their source and may not be used for any purpose without written permission of the source.

Suggested citation. World Agroforestry Centre. 2014. Book of Abstracts, 3rd World Congress on Agroforestry, Trees for life - Accelerating the impact of agroforestry. Nairobi: World Agroforestry Centre

Compiled by Christine Magaju Edited by MaryAnne Wachira, Betty Rabar, Christine Magaju, Gulshan Borah Design and layout by Martha Mwenda

Table of contents

COMPENDIUM	
OF ABSTRACTS Table of contents	
Acknowledgements	
Preface	
Oral presentations	
1.0 South Asia: Agroforestry systems, income and environmental benefits	
1.1 Policy on agroforestry and tree-based farming systems	
1.2 Agroforestry for rural employment and income generation	4
1.3 Land reclamation: Biodrainage and salinity control	8
1.4 Drylands and agroforestry	12
2.0 South Asia: Climate change, multi-functionality, livestock and fish systems	
2.1 Agroforestry for climate change mitigation and adaptation	16
2.2 Tropical homegardens: multi-functionality and benefits	19
2.3 Tree fodder and animal nutrition	24
3.0 The business of agroforestry: applying science	28
3.1 The viability of trees as crops: agroforestry, pulp and wood-based enterprises, coo	
3.2 Biofuels: using trees as a sustainable energy resource	31
3.3 Improving nutrition through agroforestry: the business case	35
3.4 Building livelihoods on tree products	38
3.5 Public-private partnerships: adding value to develop markets for producers	42
3.6 Valuing the environmental services of trees in the landscape	46
4.0 Sustaining development through agroforestry	50
4.1 Meeting development challenges with integrated approaches	50
4.2 The gender dimensions of applying agroforestry innovation	53
4.3 Adapting to climate change	57
4.4 Bridging science and development	62
4.5 Increasing food production through trees on farms	65
4.6 Building development abilities through education and capacity development	68
5.0 Applying science to the future of agroforestry	72
5.1 Humid multi-strata systems	
5.2 New tools and paradigms	76
5.3 Biodiversity and agroforested habitats	80

	5.4 The agroforestry of dry and degraded lands	84
	5.5 Temperate agroforestry	88
	5.6 The social science of agroforestry	91
6.	0 Sustaining development through agroforestry	95
	6.1 Policy, governance and international frameworks	95
	6.2 The ecology and economics of rubber agroforestry	98
	6.3 The science of scaling up and the trajectory beyond subsistence	102
	6.4 Landscape approaches	105
	6.5 Agroforestry, water quality and nutrient export	109
	6.6 Successful and scalable business models for agroforestry with quantified mitigation and adaptation co-benefits	113
Post	ers	116
So	buth Asia Day: Agroforestry systems, income and environmental benefits	
	1.1 Policy agroforestry and tree-based farming systems	
	1.2 Agroforestry for rural employment and income generation	
	1.3 Land reclamation: biodrainage and salinity control	
	1.4 Drylands agroforestry	
2.	0 South Asia Day: Climate change, multifunctionality, livestock systems and fish systems 2.1 Agroforestry for climate change mitigation and adaptation	
	2.2 Tropical homegardens: multi-functionality and benefits	158
	2.3 Tree fodder and animal nutrition	159
3.	0 The business of agroforestry: applying science	
	3.1 The viability of trees as crops: agroforestry, pulp and wood-based enterprises, cocoa, coffe	
	3.2 Biofuels: using trees as a sustainable energy resource	
	3.3 Improving nutrition through agroforestry: the business case	
	3.4 Building livelihoods on tree products	
	3.5 Public-private partnerships: adding value to develop markets for producers	
	3.6 Valuing the environmental services of trees in the landscape	
4.	0 Sustaining development through agroforestry 4.1 Meeting development challenges with integrated approaches	
	4.2 The gender dimensions of applying agroforestry innovation	234
	4.3 Adapting to climate change	238
	4.4 Bridging science and technology	250
	4.5 Increasing food production through trees on farms	252
	4.6 Building development abilities through education and capacity development	286
5.	0 Applying science to the future of agroforestry: breakthroughs and innovations 5.1 Humid multistrata systems	
		_

	5.2 New tools and paradigms	293
	5.3 Biodiversity and agroforested habitats	303
	5.4 Agroforestry in dry and degraded lands	312
	5.5 Temperate agroforestry	325
	5.6 The social science of agroforestry	332
e	0.0 Applying science to the future of agroforestry: policy innovation and global issues	336
	6.1 Policy, governance and international frameworks	336
	6.2 Ecology and economics of rubber-based agroforestry	339
	6.3 The science of scaling up and trajectory beyond subsistence	339
	6.4 Landscape approaches	340
	6.5 Agroforestry, water quality and nutrient export	343
	6.6 Successful and scalable business models for agroforestry	348
	ditional abstracts	
_	South Asia: agroforestry systems, income and environmental benefits 1.1 Policy on agroforestry and tree based farming systems	
	1.2 Agroforestry for rural employment and income generation	
	1.3 Land reclamation: bio-drainaie and salinity control	
2	, South Asia: climate change, multifunctionality, livestock and fish systems	
	2.1 Agroforestry for climate change mitigation and adaptation	
	2.2 Tropical home gardens: multifunctionality and benefits	361
3	0.0 The business of agroforestry: applying science	362
	3.1 The viability of trees as crops: agroforestry, pulp and wood-based enterprises, cocoa, coffe	
	3.2 Biofuels: using trees as a sustainable energy resource	
	3.4 Building livelihoods on tree products	
Z	0.0 Sustaining development through agroforestry 4.1 Meeting development challenges with integrated approaches	
	4.2 The gender dimensions of applying agroforestry innovation	
	4.3 Adapting to climate change	
	4.4 Bridging science and development	
	4.6 Building development abilities through education and capacity development	
	6.0 Applying science to the future of agroforestry: breakthroughs and innovations	
-	5.2 New tools and paradigms	
	5.3 Biodiversity and agroforested areas	. 397
	5.4 Agroforestry in dry and degraded lands	
e	6.0 Applying science to the future of agroforestry: policy innovation and global issues	
	6.1 Policy, governance and international frameworks	
	6.4 Landscape approaches	

6.5 Agroforestry, water quality and nutrient export	406
6.6 Successful and scalable business models for agroforestry with quantified mitigation and	
adaptation co-benefits	. 407
Annex 1: List of posters presented	410
Annex 2: Congress Committees	427
Annex 3: Congress Agenda	

OP2.1.3. CO₂ sequestration estimation for the Litsea-Cassava agroforestry model in the central highlands of Vietnam

Bao Huy^{1*}

¹Forest Resources and Environment Management, Tay Nguyen University, Buonmathuot, Vietnam

The Litsea-Cassava agroforestry model has been popularly practiced in the Central Highlands of Vietnam, producing a stable volume and contributing significantly to household income. This model overcomes the shortcomings of mono-cultivation of cassava on land under shifting cultivation; and according to many cycles, the model helps store carbon. It is therefore it is significant in reducing the greenhouse effect, which has become a global concern in recent years. In order to estimate the environment value of stored carbon of this model, the experimental method involves: sample plot, destructive sampling, conducting chemical laboratory tests to determine the stored carbon in the components of the tree; and then using multi-variables to estimate the biomass and stored carbon in the agroforestry models. This procedure forms the basis of predicting the CO_2 concentration in woody trees in the agroforestry model according to the age period, the cycle, and different combinations. The cycle of Litsea business varied over the 5-10 year period, while absorbed CO_2 in the agroforestry model varied from 25 to 84 tonnes per hectare. Within cycle two and three of this model, maintaining 2-3 shoots/stump of Litsea will have the greatest effect not only on productivity, but also on absorbed CO_2 .

Keywords: agroforestry, cassava, CO₂ sequestration, Litsea glutinosa

OP2.1.4. Assessment of carbon stocks and fractions under agroforestry plantation in the hilly ecosystems of northeast India

Ramesh Thangavel^{1*}, K M Manjaiah¹, A Venkatesh¹, D J Rajkhowa¹, S V Ngachan²

¹Natural Resource Management, ²ICAR Research Complex for NEH Region, Umiam, Meghalaya, Shillong, India

Soil organic carbon (SOC) degradation is very common in northeast India due to shifting cultivation on hill slopes coupled with unscientific management practices and high rainfall in this region. Agroforestry has a potentially important role to play in climate change mitigation through increased carbon storage in the above ground biomass and below ground soil. A 25-year-old agroforestry plantation consisting of four multipurpose tree species (MPTs) (Michelia oblonga, Parkia roxburghii, Alnus nepalensis and Pinus kesiya) maintained at ICAR Research Complex for NEH Region, Umiam, were compared with a control plot (without tree plantation) for soil organic carbon (SOC) stocks and fractions. Soil samples were collected from 0-15, 15-30, 30-45, 45-60 and 60-75 cm and analyzed for SOC stocks and fractions. MPTs showed significant influence on SOC stocks with the mean values ranging from 47.8 to 60.2 Mg ha⁻¹ and followed the order: A. nepalensis>M. oblonga>P. kesiya>P. roxburghii>Control. Land conversion from fallow to agroforestry plantation significantly enhanced the total organic carbon (TOC), particulate organic carbon (POC), KMnO₄ oxidizable C (labile C) and microbial biomass carbon (MBC) fractions in soil. The increase in these fractions was greater with A. nepalensis compared to other MPTs including control. Overall, on average, MPTs increased the TOC, POC, labile C and MBC by 26.3, 54.9, 27.1 and 34% respectively relative to the control plot. Similarly, approximately 17% increase in SOC stocks was observed under MPTs compared to control. All these C fractions including SOC stocks decreased significantly with soil depths. The increased values of lability index and carbon management index under MPTs revealed that land conversion from fallow to agroforestry plantation have more sensitivity to the changes in SOC and other C fractions in soil. The labile soil carbon fractions were significantly (P < 0.05) correlated with TOC indicating that the changes in TOC content of