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A B S T R A C T

The dry dipterocarp forest (DDF) is a major and unique forest type in Asia providing both protection and pro-
duction functions. DDF's role as a carbon sink is important in Asia, but there is a deficiency in existing biomass
models for these forests. This study aimed to develop simultaneous modeling systems to estimate tree above-
ground biomass (AGB) and its components for mixed species, dominant family, genera, and species. Twenty-
eight 0.25 ha plots in the Central highlands and one 1 ha plot in the Southeast ecoregion in Viet Nam were
measured. A total of 329 trees were destructively sampled to obtain a dataset of the dry biomass of the stem
(Bst), branches (Bbr), leaves (Ble), bark (Bba), and AGB. Using K-fold cross validation, we compared AGB pre-
dictions from independently developed AGB equation and from a system of biomass equations that estimated
component biomass and AGB simultaneously. The estimation methods for independent equation was weighted
nonlinear regression fit by maximum likelihood and for simultaneous system it was weighted nonlinear see-
mingly unrelated regression (SUR) fit by generalized least squares. We also examined different modeling systems
for different plant classification at taxonomic levels. The selected form of taxon-specific modeling systems were
AGB= a1×Db11×Hb12×WDb13+ a2×Db21+ a3×Db31+ a4×Db41 for mixed species and dominant
Dipterocarpaceae family and AGB=a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 for dominant genera of
Dipterocarpus and Shorea. The predictors of D, H, and WD are diameter at breast height, tree height and wood
density, respectively. Compared to the mixed species modeling system, genus-specific modeling systems im-
proved the reliability of AGB estimation substantially and will reduce the cost of application because the only
predictor required for measurement is D. The pantropical genus-specific modeling systems are more reliable than
pantropical mixed species models.

1. Introduction

The dry dipterocarp forest (DDF) is a major and unique forest type
in Asia, distributed in tropical and subtropical regions (Wohlfart et al.,
2014). Its distribution extends from northwestern India and Myanmar
across Thailand to the Mekong River, Laos, Cambodia and Vietnam
(Maury-Lechon and Curtet, 1998; Rundel et al., 2017; Khamyong et al.,
2018; Huy et al., 2018).

Omar et al. (2015) indicated that the DDF supports both protection
and production functions by providing good timber and a diverse non-

timber forest products such as medicinal goods, food plants and large
amounts of resin from species of dipterocarpaceae family. However, in
recent years, this forest type has been degraded by overlogging and
conversion into industrial crops such as rubber, which has had an un-
expected impact on the environment (Huy et al., 2018). The areas in
which DDF exists exhibit extreme environmental conditions such as
drought, forest fires in the dry season, and flooding in the rainy season
which can cause soil depths and soil types to fluctuate. Only dipter-
ocarpaceae species that can adapt to these harsh living conditions can
exist. Thus, the DDF is of high significance in environmental protection
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(Huy et al., 2018), especially carbon sequestration to mitigate climate
change.

There is currently a lack of information on the carbon storage ca-
pacity of the DDF. Matthew et al. (2018) showed that carbon stocks of
the DDF including above-ground carbon (AGC) content was about
222Mg ton ha−1 and below-ground carbon (BGC) was 53Mg ton ha−1.
Laumonier et al. (2010) indicated in the dipterocarp forest of Sumatra,
average above-ground biomass was 361 ± 7Mg ton ha−1, which is
also the higher than the default value in IPCC (2006) guidelines.

After years of unsustainable logging, the DDFs in Vietnam are
mostly degraded and distributed in two major ecological regions: the
Central Highlands and the South East (Huy et al., 2016b, 2018). It is
therefore important to rehabilitate the degraded DDF by enrichment
planting which will also improve the carbon absorption capacity of this
forest type. This sort of rehabiliation effort stands in contrast to the
production of industrial crops such as rubber, cashew and acacia spe-
cies, which are unsuitable to these extreme ecological conditions (Huy
et al., 2018).

So far there are some pantropical models developed to estimate tree
above-ground biomass (AGB) e.g. Brown (1997), IPCC (2003), and
Chave et al. (2005, 2014). However, Nelson et al. (1999), Cairns et al.
(2003), Basuki et al. (2009), and Huy et al. (2016b,c) determined that
site-specific allometric equations shoud be developed to improve the
accuracy of biomass estimates.

Even though the DDFs are ancarbon sink in the Asian region and to

enforce the UN-REDD program, there have been very few models de-
veloped for this forest type (Basuki et al., 2009; Rutishauser et al., 2013;
Huy et al., 2016b). Up to now, there are only a few biomass models for
the DDF. Cairns et al. (2003) developed species-specific biomass models
for the six most common species in dry forest in Mexico. Chave et al.
(2005) set up a dry forest specific AGB estimation model for the tropics.
Basuki et al. (2009) built AGB model for mixed species, and some
dominant genera such as Dipterocarpus, Hopea, Palaquium, Shorea in
Indonesia. Niiyama et al. (2010) developed a below-ground biomass
(BGB) model with predictor of diameter at breast height (D) on pe-
ninsular Malaysia; and Kralicek et al. (2017) established models that
concern dipterocarp forests in Viet Nam. These are rare works that
mentioned the BGB – a difficult and costly variable to measure. The
biomass models for the tree components are also found in an article by
Hanpattanakit et al. (2016). The authors created three models for es-
timating biomass of stem together with branches, leaves, and roots with
predictor combination of D2×H, for the 5 dominant species of the DDF
in Thailand. Huy et al. (2016b) established AGB model for mixed spe-
cies and two domiant genera of Dipterocarpus and Shorea in Vietnam.
The results indicated that site-specific models and genus-specific
models improved the estimate of AGB in the DDF. However, due to the
small sample size used for developing genus-specific models (e.g.
Shorea genus had only 36 destructively sampled trees), authors also
argued that this conclusion should be further assessed with the addi-
tional data.

Fig. 1. Map of the distribution of sample plots in tropical dry dipterocarp forests in the Central Highlands and Southeast ecoregions of Viet Nam.
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To improve the impact of the deficiency of the existing biomass
model for the DDF, this study increases the sample size of 329 de-
structively sampled trees, including 222 sampled trees from Huy et al.
(2016b) and 107 newly sampled trees which focused on collection of
dominant species, genera, and family of the DDF. We use this data to
examine the hypotheses: (1) Taxon-specific models fitted using see-
mingly unrelated regression (SUR) increase reliability and decrease
uncertainty in comparison with the mixed species models developed
independently; and (2) The genus-specific models are better than mixed
species models for the tropical region. The objective of this research is
to develop modeling systems that simultaneously estimate AGB and its
components in the DDF for mixed species, dominant family, genera, and
species to improve reliability in forest biomass and carbon estimates.
We also provide cross-assessment of pantropic biomass models and
DDF-specific models in different ecological regions to propose appro-
priate applications.

2. Materials and methods

2.1. Study sites

The data were collected in two ecological regions of the eight agro-
ecological regions of Viet Nam, which are the Central Highlands (CH)
and South East (SE) regions. The study sites are located in the north
latitude: 11°20′N–13°30′N and east longitude: 107°35′E–108°45′E
(Fig. 1). The average annual rainfall in CH is 1600mm year−1 and in SE
is 1003mm year−1, with an average annual temperature of 25.5 °C, the

dry season lasts 3–4months. The altitude of the DDF in this study
ranges from 171 to 417m, and has an igneous rock parent material. The
terrain of the study area is relatively flat with density from 228 to 1291
tree ha−1 (with D≥ 5 cm), total basal area ranges from 3.8 to 23.4 m2

ha−1 (This study; Hydrometeorology Center in the Central Highlands,
Viet Nam, 2017; Hijmans et al., 2005; Fischer et al., 2008)

2.2. Measurements

Twenty eight 0.25 ha square plots in the CH, home of the dipter-
ocarp forests in Viet Nam, and one square 1 ha plot in the SE ecoregion
were inventoried. Within each sample plot several variables were
measured for each tree ≥5 cm diameter at breast height including
species name, diameter at breast height (D, cm), and tree height (H, m).
The selection of sampled trees was proportional to the diameter dis-
tribution of the DDF (Fig. 2) and density, biomass of dominant species
(Basuki et al., 2009). A total of 329 trees were destructively sampled,
this includes the 222 trees from the dataset used by Huy et al. (2016b)
and 107 newly sampled trees from the current study that emphasized
collection of samples in domiant family, genera and species in the
stands.

Prior to felling the sample trees, species name was recorded, D and
H were measured. Height was remeasured after the sample trees were
cut. Aboveground biomass components including stem and bark,
branches, and leaves were separated to obtain the green weights in the
field.

To obtain the fresh bark biomass, stems of the sampled trees were

Fig. 2. Distribution of diameter (D, cm) in all sample plots per ha (top). Distribution of diameter (D, cm) (bottom left) and height (H, m) of destructively sampled
trees (bottom right) (below).
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split into five logs of equal length and then the diameters with and
without bark at the base of each log were measured, volume of five
equal logs with and without bark was calculated using Huber’s formula
(Chapman, 1921; Huy et al., 2016c) and then fresh bark volume of
sampled trees Vba (m3) was calculated as the difference between volume
of stem with bark and without bark whereas the fresh bark density (dfba
g cm−3) was recorded as the average density of five bark samples at five
equal logs. The fresh bark biomass per sampled tree (Bfba kg tree−1)
was computed using the following formula (Huy et al., 2016c):

= × ×Bf df V 10ba ba ba
3 (1)

where Bfba is fresh bark biomass (kg tree−1), dfba is fresh bark density (g
cm−3) and Vba is fresh bark volume (m3 tree−1).

Fresh biomass of the stem was then computed by subtracting fresh
bark biomass from the fresh weight of stem with bark (Huy et al.,
2016c). To obtain the fresh-to-dry ratio of each sampled tree compo-
nent, five samples for stem (500 g) and bark (300 g) at the base of each
equal log were collected, along with three for branches (500 g) (at big,
medium and small branches), and two for old and new leaves (300 g)
and sent to the laboratory to determine their dry mass. Samples were
dried at 105 °C until a constant weight was attained. This provided the
average fresh-to-dry mass ratio of the four tree components to calculate
the total dry biomass of the tree. We define the four components as stem
(Bst), branches (Bbr), leaves (Ble) and bark (Bba) and total tree above-
ground biomass: AGB= Bst+ Bbr+ Ble+ Bba (Huy et al., 2016b,c;
Kralicek et al., 2017). The wood density variable (WD) was then com-
puted and averaged as the ratio of dry biomass to the volume of wood
disk samples taken from every one-fifth of stem length (Huy et al.,
2016a). Table 1 shows the summary statistics for each of the predictors
and the response variables of the destructive sampled trees for mixed
species, a dominant family (Dipterocarpaceae), two dominant genera
(Dipterocarpus and Shorea); and four dominant species (Dipterocarpus
tuberculatus Roxb., Dipterocarpus obtusifolius Teijsm. Ex Miq., Shorea
obtusa Wall. Ex Blume, and Shorea siamensis Miq.).

2.3. Approaches to developing allometric equations

Most tropical forest types have a diversity of tree species, with the
dominance of plant species, genus and family being often unclear. In
contrast, the DDF dominated by the Dipterocarpaceae family with
several dominant genera and dozen dominant species within.
Therefore, the approach of developing biomass models by dominant
plant family and dominant plant genera using hierarchical modeling
should be considered in this forest type to improve the reliability and
reduce uncertainty (Huy et al., 2016b).

Basuki et al. (2009) used a dataset from the tropical lowland Dip-
terocarp forests in Indonesia for developing AGB models for four
common genera – Dipterocarpus, Hopea, Palaquium and Shorea. The
genera of Dipterocarpus, Hopea, and Shorea belong to the Dipter-
ocarpaceae family while the Palaquium genus belongs to the Sapotaceae

Table 1
Summary statistics for predictor and response variables of destructively sam-
pled tree using plant classification hierarchy.

Plant classification
hierarchy

Variable Min Mean Max Sd

Mixed species D (cm) 3.4 18.1 48.8 9.751
N=329 H (m) 2.5 9.2 23.5 4.238

WD (g/cm3) 0.379 0.662 0.953 0.096
Bst (kg) 0.5 95.1 885.3 148.704
Bbr (kg) 0.2 49.8 607.5 86.939
Ble (kg) 0.1 5.3 42.4 6.238
Bba (kg) 0.1 27.7 311.0 45.638
AGB (kg) 1.3 177.9 1719.8 277.770

Dominant family
N=228 Dipterocarpaceae family:

D (cm) 4.9 19.1 48.8 10.058
H (m) 2.7 9.1 23.5 4.308
WD (g/cm3) 0.379 0.664 0.917 0.091
Bst (kg) 0.6 106.0 885.3 165.106
Bbr (kg) 0.2 57.9 607.5 98.704
Ble (kg) 0.2 5.9 42.4 6.751
Bba (kg) 0.3 31.9 311.0 51.222
AGB (kg) 1.5 201.7 1710.8 311.298

Dominant genera
N=150 Dipterocarpus

genus:
D (cm) 4.9 20.0 48.8 11.058
H (m) 2.7 9.7 23.5 4.825
WD (g/cm3) 0.379 0.633 0.858 0.079
Bst (kg) 0.6 128.0 885.3 188.052
Bbr (kg) 0.2 69.1 607.5 114.190
Ble (kg) 0.2 6.6 42.4 7.825
Bba (kg) 0.3 36.7 311.0 61.527
AGB (kg) 1.5 240.4 1710.8 359.983

N=78 Shorea genus:
D (cm) 5.6 17.3 48.2 7.512
H (m) 3.1 7.9 14.1 2.709
WD (g/cm3) 0.507 0.724 0.917 0.083
Bst (kg) 1.2 63.8 752.1 95.834
Bbr (kg) 0.2 36.4 377.7 52.694
Ble (kg) 0.3 4.4 19.3 3.540
Bba (kg) 1.2 22.7 101.7 16.697
AGB (kg) 2.9 127.3 1250.8 162.445

Dominant species
N=75 Dipterocarpus tuberculatus Roxb.:

D (cm) 4.9 16.1 40.5 9.357
H (m) 2.7 8.5 19.0 3.922
WD (g/cm3) 0.379 0.624 0.858 0.090
Bst (kg) 0.6 69.1 548.5 104.9
Bbr (kg) 0.2 42.9 377.7 76.666
Ble (kg) 0.2 5.0 42.4 6.977
Bba (kg) 0.3 13.1 67.5 14.434
AGB (kg) 1.5 130.1 993.5 196.348

N=54 Dipterocarpus obtusifolius Teijsm. Ex Miq.:
D (cm) 5.6 20.3 41.2 8.019
H (m) 3.4 8.3 16.4 2.774
WD (g/cm3) 0.495 0.663 0.826 0.060
Bst (kg) 1.6 97.6 446.2 98.317
Bbr (kg) 0.7 47.6 236.7 52.673
Ble (kg) 0.5 5.4 16.6 3.942
Bba (kg) 1.2 26.9 87.4 17.724
AGB (kg) 4.0 177.5 736.9 166.810

N=42 Shorea obtusa Wall. Ex Blume:
D (cm) 7.5 16.1 28.5 4.718
H (m) 3.3 8.4 13.8 2.939
WD (g/cm3) 0.555 0.744 0.917 0.085
Bst (kg) 5.1 54.3 262.1 45.702
Bbr (kg) 0.5 27.7 151.6 28.469
Ble (kg) 0.4 4.2 11.8 2.856
Bba (kg) 2.7 18.6 55.1 11.110
AGB (kg) 9.1 104.8 470.5 82.634

N=36 Shorea siamensis Miq.:
D (cm) 5.6 18.6 48.2 9.726
H (m) 3.1 7.3 14.1 2.317

Table 1 (continued)

Plant classification
hierarchy

Variable Min Mean Max Sd

WD (g/cm3) 0.507 0.700 0.818 0.074
Bst (kg) 1.2 74.9 752.1 132.4
Bbr (kg) 0.2 46.6 377.7 70.452
Ble (kg) 0.3 4.6 19.3 4.234
Bba (kg) 1.2 27.5 101.7 20.625
AGB (kg) 2.9 153.5 1250.8 220.776

Note: Response variables including Bst, Bbr, Ble, Bba and AGB are biomass of
tree stem, branches, leaves, bark and total above-ground biomass, respectively.
Predictor variables consisting of D, H and WD are diameter at breast height,
tree height and wood density, respectively. N: Number of destructively sampled
trees.
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family. Rundel et al. (2017) and Khamyong et al. (2018) asserted that
the DDF in Southeast Asia (Thailand, Laos and Viet Nam) has two
dominant families, Dipterocarpaceae and Fabaceae with two dominant
genera Dipterocarpus and Shorea with four dominant species namely
Dipterocarpus obtusifolius, Dipterocarpus tuberculatus, Shorea obtusa, and
Shorea siamenesis.

The data used in this study belonged to four main families –
Dipterocarpaceae, Combretaceae, Leguminosaceae and Rubiaceae with
Dipterocarpaceae being the most dominant. There are three distinct
dominant genera: Dipterocarpus, Shorea and Terminalia; with 6 distinctly
dominant species – Dipterocarpus tuberculatus Roxb., Dipterocarpus ob-
tusifolius Teijsm. Ex Miq., Shorea obtusaWall. ex Blume, Shorea siamensis
Miq., Terminalia alata Wall., and Dipterocarpus intricatus Dyer.

Given the destructively sampled trees and the predominance of the
timber plants of the DDF, this study examined and cross-valiadated
biomass modeling systems along with the order of the mixed species,
dominant Dipterocarpaceae family, dominant genus including two
genera of Dipterocarpus and Shorea, and dominant species consist of 4
species of Dipterocarpus obtusifolius Teijsm. Ex Miq., Dipterocarpus tu-
berculatus Roxb., Shorea obtusa Wall. ex Blume and Shorea siamensis
Miq.

2.4. Model fitting

We compared two methods to fit systems of equations for AGB and
its components: weighted nonlinear models fit by maximum likelihood
and weighted nonlinear models fit with seemingly unrelated regression
(SUR).

Predictor(s): Three predictors have commonly been suggested for
pantropic AGB models. These are D (cm), H (m), WD (g cm−3) or
combinations of these predictors: D2H (m3) = (D (cm)/100)2×H (m),
D2HWD (kg)=D2H (m3)×WD (g cm−3)× 103 (Brown, 1997; IPCC,
2003; Cairns et al., 2003; Basuki et al., 2009; Chave et al., 2005, 2014;
Huy et al., 2016a,b,c; Kralicek et al., 2017). These previous studies
indicate AGB and its components are highly correlated with D and H,
where H also reflects difference of the sites. With the mixed species
models, WD is correlated with the species (Huy et al., 2016a). We in-
vestigated all three predictors D, H, WD and combinations D2H and
D2HWD in order to choose the right variables for biomass models ac-
cording to the order of plant classification such as mixed species, fa-
mily, genera, species and for models for each of the four AGB compo-
nents.

Power form: Power function has been proposed for most of the
pantropical biomass models (Chave et al., 2005, 2014; Picard et al.,
2015; Huy et al., 2016a, b, c; Kralicek et al., 2017). Figs. 3 and 4 show
that the AGB and its components versus D exhibit compliance with the
power law. Therefore, this study applies the power form to appraise the
biomass modeling system with various predictors.

Weighted nonlinear models fit by Maximum Likelihood: To correct for
heteroscedasticity in residuals (Davidian and Giltinan, 1995; Picard
et al., 2012), weighted nonlinear regression was used in this study.
Using the Furnival index (Furnival, 1961; Jayaraman, 1999), we com-
pared the performance of log-linear and non-linear models to predict.
Based on the results of that comparison, nonlinear models were se-
lected. This is consistent with Huy et al. (2016c). Weighted nonlinear
models fit by maximum likelihood were examined to select the best
predictor(s) for AGB and its biomass component (Bates, 2010; Pinheiro
et al., 2014). The nlme packages in statistical software R (R Core Team,
2018) was used with the form after Huy et al. (2016a,b,c), Kralicek
et al. (2017) was:

= × +α εY Xi i
β

i (2)

Nε iid σ(0, )i i
2 (3)

where Yi is the Bst, Bbr, Ble, Bba or AGB in kg for the ith sampled tree; α
and β are the parameters of the model; and Xi is the predictor(s) such as
D, H, WD or some combinations thereof D2H (m3) or D2H(WD) (kg) for
the ith sampled tree; and εi is the random error associated with the ith
sampled tree.

The variance function was as follows (Huy et al., 2016a,b,c):

=ε σ νVar( ) ( )i i
δ2 2 (4)

where σ2 is the estimated error sum of squares; νi is the weighting
variable (D, D2H or D2HWD) associated with the ith sampled tree; and δ
is the variance function coefficient to be estimated.

Weighted nonlinear models fit by seemingly unrelated regression (SUR):
It has been shown that the sum of power functions of component bio-
mass models is not a power function of the AGB equation (Picard et al.,
2012; Sanquetta et al., 2015; Poudel and Temesgen, 2016), so estab-
lishing independent biomass component models to estimate total tree
AGB will give a significant deviation compared to the independent
model AGB. Additionally, to account for the cross-equation correlation
among the equations of the different biomass components, the mod-
eling system is simultaneously fit rather than separately (Parresol,

Fig. 3. Scatter plot of biomass for four components, tree stem (Bst, kg), branches (Bbr, kg), leaves (Ble, kg), bark (Bba, kg), and total aboveground biomass (AGB, kg)
for mixed species by diameter at breast height (D, cm).
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2001; Picard et al., 2012; Poudel and Temesgen, 2016).
The weighted nonlinear SUR (Parresol, 2001; Poudel and Temesgen,

2016; Kralicek et al., 2017) was performed using the SAS procedure
Proc Model with the generalized least squares (GLS) method (SAS
Institute Inc., 2014; Affleck and Dieguez-Aranda, 2016). The modeling
system had the following general form (Sanquetta et al., 2015):

= × +Stem Bst a X ε: j
b j

1 1
1

1 (5)

= × +Branches Bbr a X ε: j
b

2 2 2j2 (6)

= × +Leaves Ble a X ε: j
b j

3 3
3

3 (7)

= × +Bark Bba a X ε: j
b j

4 4
4

4 (8)

Fig. 4. Scatter graph of total tree above-ground biomass (AGB, kg) versus diameter at breast height (D, cm) by dominant plant families (top), dominant plant genera
(middle) and dominant plant species (bottom).
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= + + +

= × + × + ×

+ × +

Above ground biomass AGB Bst Bbr Ble Bba

a X a X a X

a X ε

:

j
b j

j
b

j
j

j
j

1 1
1

2 2 3 3
3

4 4
4

5

j2

(9)

where Bst, Bbr, Ble, Bba and AGB are biomass of stem, branches, leaves,
bark and total in kg respectively; ai and bi are parameters of the power
model i (i=1, 2, 3, 4 for stem, branches, leaves and bark respectively);
Xij is the predictor variables (D, H, D2H or D2HWD) for the ith equation
and the jth predictor; and εi is the residuals for the ith equation (i=1,
2, 3, 4, 5). The weighting function is 1/Xij

2δ (Picard et al., 2012) with δ
is the variance function coefficient to be estimated.

2.5. Model comparison, selection and cross validation

K-fold with K=10 cross validation (Kohavi, 1995; Picard et al.,
2012) was performed to cross-validate the selected models and other
pantropics models included in the analysis. The dataset was randomly
split into K equal sized subsamples, in which K − 1 subsamples were
used to develop models and the K remaining subsamples were used to
assess model performance. The cross-validation process was repeated
10 times, and statistics for comparison and validation of the models
were averaged over 10 realizations.

The Akaike information criterion (AIC) (Akaike, 1973) was used as a
key statistic to compare and select the optimal models. The model that
had the lowest AIC value was selected as the best model. Along with
AIC, adj. R2, statistical significance of parameters (p-value < 0.05),
diagnostic plots of the trend of residuals were also used to assess model

Table 2
Nonlinear model development and K-fold cross validation to select plant classification hierarchy-specific equations for above-ground biomass (AGB) estimates.

Model form Weight variable AIC Adj. R2 Bias (%) RMSE (%) MAPE (%)

Mixed species models
AGB= a×Db 1/Dδ 2675 0.914 −12.5 50.4 29.2
AGB=a×Db×Hc 1/DΔ 2678 0.927 −12.4 46.8 28.9
AGB=a × (D2H)b 1/(D2H)δ 2957 0.935 −24.0 63.5 43.3
AGB=a×Db×WDc 1/Dδ 2662 0.890 −11.4 46.9 27.6
AGB=a×Db×Hc×WDd 1/Dδ 2664 0.910 −11.1 44.6 27.1
AGB=a × (D2H×WD)b 1/(D2H×WD)δ 2938 0.922 −19.2 54.8 37.2

Dominant family-specific models
Dipterocarpaceae family
AGB=a×Db 1/Dδ 1902 0.915 −11.6 48.4 28.5
AGB=a×Db×Hc 1/Dδ 1906 0.930 −11.3 46.3 28.0
AGB=a × (D2H)b 1/(D2H)δ 2089 0.945 −24.3 66.4 43.9
AGB=a×Db×WDc 1/Dδ 1891 0.884 −10.4 43.3 27.0
AGB=a×Db×Hc×WDd 1/Dδ 1893 0.910 −9.9 41.7 26.4
AGB=a × (D2H×WD)b 1/(D2H×WD)δ 2070 0.945 −18.5 53.7 37.4

Dominant genera-specific models
Dipterocarpus genus
AGB=a×Db 1/Dδ 1262 0.936 −12.2 46.3 29.2
AGB=a×Db×Hc* 1/Dδ 1268 0.944 −12.2 46.6 29.3
AGB=a × (D2H)b 1/(D2H)δ 1404 0.952 −26.7 69.0 46.5
AGB=a×Db×WDc 1/Dδ 1265 0.923 −11.7 45.2 28.6
AGB=a×Db×Hc×WDd 1/Dδ 1271 0.937 −11.3 45.6 28.2
AGB=a × (D2H×WD)b 1/(D2H×WD)δ 1392 0.952 −21.8 56.9 40.4

Shorea genus
AGB=a×Db 1/Dδ 639 0.816 −8.8 33.2 24.6
AGB=a×Db×Hc 1/Dδ 643 0.840 −8.7 34.4 24.5
AGB=a × (D2H)b 1/(D2H)δ 691 0.869 −14.9 45.3 33.8
AGB=a×Db×WDc 1/Dδ 634 0.824 −7.9 31.4 23.6
AGB=a×Db×Hc* × WDd 1/Dδ 641 0.841 −7.4 31.5 23.7
AGB=a × (D2H×WD)b 1/(D2H×WD)δ 686 0.863 −11.8 38.8 31.1

Dominant species-specific models
Dipterocarpus tuberculatus Roxb.
AGB=a×Db 1/Dδ 554 0.916 −13.4 47.2 31.5
AGB=a×Db×Hc* 1/Dδ 561 0.916 −13.2 46.7 31.4
AGB=a × (D2H)b 1/(D2H)δ 630 0.880 −24.3 60.3 44.1

Dipterocarpus obtusifolius Teijsm. Ex Miq.
AGB=a×Db 1/Dδ 480 0.854 −10.5 36.8 25.8
AGB=a×Db×Hc 1/Dδ 480 0.854 −10.5 36.8 25.9
AGB=a × (D2H)b 1/(D2H)δ 528 0.827 −20.0 56.3 39.9

Shorea obtusa Wall.
AGB=a×Db 1/Dδ 323 0.931 −4.4 22.3 18.0
AGB=a×Db×Hc 1/Dδ 326 0.924 −3.8 21.3 17.3
AGB=a × (D2H)b 1/(D2H)δ 366 0.681 −10.8 33.4 26.5

Shorea siamensis Miq.
AGB=a×Db 1/Dδ 314 0.862 −13.3 41.5 33.8
AGB=a×Db×Hc* 1/Dδ 322 0.850 −12.6 41.6 33.9
AGB=a × (D2H)b 1/(D2H)δ 329 0.895 −21.3 55.8 43.6

Note: In K-fold cross validation, the dataset is randomly split into K (K= 10 folds) equal sized subsamples, K− 1 subsamples used for developing models, calculation
of AIC, Adj. R2; and K remaining subsample used for validation, calculation of Bias, RMSE, MAPE; finally, all those statistics averaged over 10 realizations. *:
Parameter with pvalue > 0.05. δ: the variance function coefficient; Predictor: D2H (m3) = (D (cm)/100)2×H (m); D2H×WD (kg)=D2H (m3)×WD (g/
cm3)×1000. For species-specific models, predictor of WD was not examined. Bold: Selected model based on K-fold cross validation statistics and diagnostic plots.
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performance. All statistics used in this fashion were calculated using the
cross-validation procedure.

For cross-validation of the selected model and the pantropics models
included in the analysis, bias (%), root mean square error (RMSE, %),
and mean absolute percent error (MAPE, %) (Basuki et al., 2009;

Swanson et al., 2011; Huy et al., 2016a,b,c) were calculated. Bias,
RMSE and MAPE were also calculated using the cross-validation pro-
cedure. Smaller values for indicators are preferred.

For Mixed- species: AGB = a×Db×Hc×WDd

For Dipterocarpaceae Family: AGB = a×Db×Hc×WDd

For Dipterocarpus Genus: AGB = a×Db

For Shorea Genus: AGB = a×Db

Fig. 5. Plots of selected aboveground biomass (AGB) models for mixed-species, dominant family, dominant genus left column: Observed was randomly split from 9/
10 dataset vs fitted AGB; middle column: Maximum likelihood weighted residuals vs fitted AGB; and right column: Validation data of AGB was randomly split from 1/
10 dataset vs predicted AGB. k-fold cross validation with k= 10.
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Additionally, Fit Index (FI) (Parresol, 1999; Subedi et al., 2010) was
also used to validate the goodness of fit among the selected models in
this study and the pantropics models and larger values for FI are

For Dipterocarpus tuberculatus Roxb. Species: AGB = a×Db

For Dipterocarpus obtusifolius Teijsm. Ex Miq. Species: AGB = a×Db

For Shorea obtusa Wall. Species: AGB = a×Db

For Shorea siamensis Miq. Species: AGB = a×Db

Fig. 6. Plots of selected aboveground biomass (AGB) models for dominant species specific. Left: Observed was randomly split from 9/10 dataset vs fitted AGB;
Middle: Maximum likelihood weighted residuals vs fitted AGB; and Right: Validation data of AGB was randomly split from 1/10 dataset vs predicted AGB. K-fold
cross validation with k= 10.
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Table 3
K-fold cross validations to select separate equations for biomass components including Bst, Bbr, Ble and Bba (biomass of stem, branches, leaves and bark, respectively)
for mixed species.

Model form Weight variable AIC Adj. R2 Bias (%) RMSE (%) MAPE (%)

Bst= a×Db 1/Dδ 2355 0.916 −15.8 56.4 34.2
Bst= a×Db×Hc 1/Dδ 2311 0.945 −13.8 51.0 30.8
Bst= a × (D2H)b 1/(D2H)δ 2499 0.938 −20.9 60.8 38.6
Bst= a×Db×WDc 1/Dδ 2347 0.901 −14.6 53.5 32.8
Bst= a×Db×Hc×WDd 1/Dδ 2282 0.945 −11.3 43.8 28.1
Bst= a × (D2H×WD)b 1/(D2H×WD)δ 2471 0.941 −16.3 48.6 32.4

Bbr= a×Db 1/Dδ 2222 0.822 −51.2 133.9 75.6
Bbr= a×Db×Hc 1/Dδ 2213 0.781 −50.3 142.6 74.9
Bbr= a × (D2H)b 1/(D2H)δ 2512 0.792 −93.2 206.6 117.4
Bbr= a×Db×WDc 1/Dδ 2224 0.814 −50.2 142.0 73.9
Bbr= a×Db×Hc×WDd* 1/Dδ 2219 0.771 −50.2 137.7 75.2
Bbr= a × (D2H×WD)b 1/(D2H×WD)δ 2498 0.794 −83.4 190.9 106.4

Ble= a×Db 1/Dδ 1127 0.690 −31.0 86.2 54.4
Ble= a×Db×Hc 1/Dδ 1132 0.702 −30.6 86.1 54.0
Ble= a × (D2H)b 1/(D2H)δ 1184 0.708 −34.9 92.2 57.9
Ble= a×Db×WDc 1/Dδ 1129 0.682 −30.8 88.3 54.1
Ble= a×Db×Hc×WDd 1/Dδ 1134 0.699 −30.2 83.8 53.1
Ble= a × (D2H×WD)b 1/(D2H×WD)δ 1167 0.711 −33.2 92.1 55.8

Bba=a×Db 1/Dδ 1991 0.724 −40.7 128.6 64.2
Bba= a×Db×Hc* 1/Dδ 1999 0.720 −40.8 129.6 64.6
Bba= a × (D2H)b 1/(D2H)δ 2104 0.790 −51.6 137.1 76.0
Bba= a×Db×WDc 1/Dδ 1994 0.676 −39.9 126.8 63.9
Bba= a×Db×Hc* × WDd 1/Dδ 2004 0.674 −41.0 128.8 65.4
Bba= a × (D2H×WD)b 1/(D2H×WD)δ 2083 0.735 −48.4 141.6 72.6

Note: In K-fold cross validation, the dataset is randomly split into K (K= 10 folds) equal sized subsamples, K− 1 subsamples used for developing models, calculation
of AIC, Adj. R2; and K remaining subsample used for validation, calculation of Bias, RMSE, MAPE; finally, all those statistics averaged over 10 realizations. *:
Parameter with pvalue > 0.05. δ: the variance function coefficient; Predictor: D2H (m3) = (D (cm)/100)2×H (m); D2H×WD (kg)= D2H (m3)×WD (g/
cm3)×1000. Bold: Selected model based on K-fold cross validation statistics and diagnostic plots.

Table 4
K-fold cross validations to select separate equations for biomass components including Bst, Bbr, Ble and Bba (biomass of stem, branches, leaves and bark, respectively)
for dominant Dipterocarpaceae family.

Model form Weight variable AIC Adj. R2 Bias (%) RMSE (%) MAPE (%)

Bst= a×Db 1/Dδ 1663 0.919 −14.3 52.8 33.1
Bst= a×Db×Hc 1/Dδ 1638 0.947 −13.1 46.4 30.4
Bst= a × (D2H)b 1/(D2H)δ 1769 0.935 −21.3 64.4 40.1
Bst= a×Db×WDc 1/Dδ 1657 0.901 −13.3 48.6 31.7
Bst= a×Db×Hc×WDd 1/Dδ 1615 0.952 −10.2 41.3 27.0
Bst= a × (D2H×WD)b 1/(D2H×WD)δ 1742 0.956 −16.3 49.1 33.4

Bbr= a×Db 1/Dδ 1618 0.825 −50.1 125.8 74.1
Bbr= a×Db×Hc 1/Dδ 1615 0.780 −48.2 135.2 72.9
Bbr= a × (D2H)b 1/(D2H)δ 1802 0.805 −93.1 202.4 118.2
Bbr= a×Db×WDc* 1/Dδ 1612 0.817 −47.9 132.0 71.4
Bbr= a×Db×Hc×WDd* 1/Dδ 1623 0.764 −48.0 138.0 72.4
Bbr= a × (D2H×WD)b 1/(D2H×WD)δ 1792 0.820 −81.5 180.4 105.5

Ble= a×Db 1/Dδ 808 0.691 −25.0 66.8 48.2
Ble= a×Db×Hc 1/Dδ 811 0.707 −24.5 67.8 47.5
Ble= a × (D2H)b 1/(D2H)δ 842 0.715 −27.3 72.6 50.3
Ble= a×Db×WDc 1/Dδ 811 0.683 −24.4 68.6 47.2
Ble= a×Db×Hc×WDd 1/Dδ 812 0.716 −23.6 67.5 46.2
Ble= a × (D2H×WD)b 1/(D2H×WD)δ 829 0.733 −24.9 68.9 46.8

Bba=a×Db 1/Dδ 1433 0.710 −27.1 76.4 49.7
Bba= a×Db×Hc* 1/Dδ 1439 0.737 −27.3 73.1 49.5
Bba= a × (D2H)b 1/(D2H)δ 1477 0.808 −34.3 90.9 58.2
Bba= a×Db×WDc 1/Dδ 1430 0.613 −24.9 68.8 48.0
Bba= a×Db×Hc* × WDd 1/Dδ 1438 0.643 −25.2 72.8 48.4
Bba= a × (D2H×WD)b 1/(D2H×WD)δ 1460 0.763 −31.1 79.4 55.3

Note: In K-fold cross validation, the dataset is randomly split into K (K= 10 folds) equal sized subsamples, K− 1 subsamples used for developing models, calculation
of AIC, Adj. R2; and K remaining subsample used for validation, calculation of Bias, RMSE, MAPE; finally, all those statistics averaged over 10 realizations. *:
Parameter with pvalue > 0.05. δ: the variance function coefficient; Predictor: D2H (m3) = (D (cm)/100)2×H (m); D2H×WD (kg)= D2H (m3)×WD (g/
cm3)×1000. Bold: Selected model based on K-fold cross validation statistics and diagnostic plots.
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where K is the number of folds (10); n, N are the number of sampled
trees in fold K and number of the entire dataset, respectively; and yi, ̂yi

yand¯ are the observed, predicted and averaged Bst, Bbr, Ble, Bba and
AGB for the ith sampled tree in realization K, respectively.

Final parameter estimates for all of the selected modeling systems
were obtained by fitting models with the entire dataset.

3. Results

3.1. Selection of taxon-specific models – independent fit

Weighted nonlinear models were fit via Maximum Likelihood to
develop and select the appropriate predictor(s) of AGB models for

mixed species, dominant Dipterocarpaceae family-specific, two domi-
nant genera-specific of Dipterocarpus and Shorea, and four dominant
species-specific of Dipterocarpus tuberculatus Roxb., Dipterocarpus obtu-
sifolius Teijsm. Ex Miq., Shorea obtusa Wall., Shorea siamensis Miq and K-
fold cross validation was employed to select the best models (Table 2).

The three predictors including D, H, and WD were evaluated, except
in the case of the species-specific model where theWD is considered the
same value for a given species.

The best AGB models for mixed species and dominant
Dipterocarpaceae family-specific involved all three of D, H and WD.
Meanwhile, among the AGBmodels that were specific to each dominant
genus and species, very similar values of AIC, R2 and cross-validation
statistics were observed (Table 2), therefore the simplest models with
only D as a predictor were for parsimony.

The forms of the AGB models obtained by independent fitting were:
For mixed species and dominant dipterocarpaceae family:

= × × ×AGB a D H WDb c d (14)

Table 5
Development of simultaneously fit models using SUR and cross-validation using K-fold for mixed-species, dominant family, dominant genera and dominant species.

Plant classification hierarchy level Modeling system Bias (%) RMSE (%) MAPE (%)

Mixed-species Bst= a1×Db11×Hb12×WDb13 1.0 45.6 26.2
Bbr= a2×Db21 −33.0 127.3 59.9
Ble= a3×Db31 −44.6 96.7 62.9
Bba= a4×Db41 −14.3 66.6 46.6
AGB=Bst+Bbr+Ble+ Bba −1.8 51.4 25.4

Dominant family Dipterocarpaceae:
Bst= a1×Db11×Hb12×WDb13 −0.5 38.0 31.0
Bbr= a2×Db21 −75.1 151.5 91.6
Ble= a3×Db31 −74.0 129.4 86.0
Bba= a4×Db41 4.1 58.2 48.6
AGB=Bst+Bbr+Ble+ Bba −5.9 36.2 27.7

Dominant genera Dipterocarpus:
Bst= a1×Db11 −20.3 45.3 29.3
Bbr= a2×Db21 −2.2 31.4 26.1
Ble= a3×Db31 −55.0 121.1 65.1
Bba= a4×Db41 −30.9 90.3 74.0
AGB=Bst+Bbr+Ble+ Bba −8.5 27.2 20.4
Shorea:
Bst= a1×Db11 −6.4 36.5 30.5
Bbr= a2×Db21 −12.9 44.5 36.8
Ble= a3×Db31 −43.8 83.2 63.8
Bba= a4×Db41 −11.7 39.1 31.9
AGB=Bst+Bbr+Ble+ Bba −3.4 23.8 20.9

Dominant species Dipterocarpus tuberculatus Roxb.:
Bst= a1×Db11 −26.6 42,4 34.6
Bbr= a2×Db21 −28.9 51.1 43.0
Ble= a3×Db31 5.7 25.7 18.9
Bba= a4×Db41 −25.4 62.0 43.1
AGB=Bst+Bbr+Ble+ Bba −15.1 26.6 20.9
Dipterocarpus obtusifolius Teijsm. Ex Miq.:
Bst= a1×Db11 −22.4 64.9 40.0
Bbr= a2×Db21 −112.8 217.1 134.6
Ble= a3×Db31 −17.5 39.0 32.9
Bba= a4×Db41 −14.4 41.6 33.5
AGB=Bst+Bbr+Ble+ Bba −25.8 65.6 36.1
Shorea obtusa Wall. Ex Blume:
Bst= a1×Db11 −8.5 50.4 37.6
Bbr= a2×Db21 −22.1 67.4 58.9
Ble= a3×Db31 −92.9 177.5 94.5
Bba= a4×Db41 −16.6 32.7 31.6
AGB=Bst+Bbr+Ble+ Bba −7.7 37.0 26.7
Shorea siamensis Miq.:
Bst= a1×Db11 −6.2 28.5 24.4
Bbr= a2×Db21 1.9 44.5 35.9
Ble= a3×Db31 −47.5 78.0 63.3
Bba= a4×Db41 17.9 24.1 20.3
AGB=Bst+Bbr+Ble+ Bba 7.0 20.9 18.5

Note: In K-fold cross validation, the dataset is randomly split into K (K= 10 folds) equal sized subsamples, K− 1 subsamples used for developing models, calculation
of AIC, Adj. R2; and K remaining subsample used for validation, calculation of Bias, RMSE, MAPE; finally, all those statistics averaged over 10 realizations. Bst, Bbr,
Ble, Bba and AGB are biomass of stem, branches, leaves, bark and total above-ground biomass, respectively.
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For two dominant genera of Dipterocarpus and Shorea, and four
dominant species of Dipterocarpus tuberculatus, Dipterocarpus obtusifolius,
Shorea obtuse and Shorea siamensis:

= ×AGB a Db (15)

Figs. 5 and 6 demonstrate plots of selected AGB models at different
levels of mixed species, family, genera and species for observed vs
fitted, weighted residuals vs fitted, and validation data vs predicted
AGB.

Because the selected genus-specific and species-specific AGB models
had only one variable D (Table 2), its components models for Bst, Bbr,
Ble and Bba also only included D in the SUR modeling system. Mean-
while, the selected AGB models for mixed species and for the Dipter-
ocarpaceae family consisted of all three variables, D, H and WD
(Table 2); Therefore development and cross-validation were done in-
dependently to select optimal predictor(s) for each model component
Bst, Bbr, Ble and Bba (Tables 3 and 4); As a result, given the case of
mixed species and the Dipterocarpaceae family, the selected Bst model
included three variables of D, H and WD. Whereas the selected models
of Bbr, Ble and Bba only included D (Tables 3 and 4).

3.2. Models fit as a system with SUR

To simultaneously estimate tree AGB and its components, the
weighted nonlinear SUR method was performed. We then compared the
reliability and uncertainty of the SUR method against the AGB and
components models fitted independently.

Based on the optimal predictor(s) determined from the previous
step, the SUR modeling system was constructed and predictions for AGB
and its components were produced using the cross-validation procedure
for each level of plant classification (Table 5). Comparative results
showed that the modeling systems fit simultaneously by SUR produced
substantially lower errors (Bias, RMSE, and MAPE) than models that
developed separately at levels of mixed species, family and genera
(Table 6). Figs. 7–9 show predictions of simultaneously fit (using SUR)
models against observed AGB and its components for mixed species and
two dominant genera.

In addition, the results indicated that the modeling system improved
reliability of predictions for groups further down the hierarchy (for
example from mixed species to family, and then to genus). The

uncertainty of species-specific models did not show improvement re-
lative to the genus-specific models (Tables 5 and 6). Therefore, we used
the entire dataset to estimate the parameters for simultaneous systems
for estimating AGB and its components for the levels of mixed species,
dominant family and dominant genus (Table 7). Sometimes only the
predictor D is measured in the field, hence the modeling system with
only the D variable also developed and the results presented in Table 8.

The forms of selected modeling systems developed simultaneously
by SUR at different plant classification levels as follows:

For mixed species and dominant Dipterocarpaceae family:

= + + + = × × × + ×

+ × + ×

AGB Bst Bbr Ble Bba a D H WD a D

a D a D .

b b b b

b b
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For dominant genera of Dipterocarpus and Shorea:

= + + + = × + × + ×
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4. Discussion

4.1. Variability of tree biomass components in the DDF

The Ble and Bba are highly variable (Figs. 3, 7–9), which resulted in
models that had slightly lower adj. R2= 0.6–0.7 and its Bias, RMSE and
MAPE were larger than those errors of the Bst and AGB models
(Table 5). This reflects the variation of the foliage and the thickness of
the bark among different species in the DDF. For example, Dipterocarpus
tuberculatus and Shorea siamenesis have large foliage and very wide and
thick leaves, while Dipterocarpus obtusifolious has medium-size foliage
and leaves; Shorea obtusa shows the smallest foliage and leaves. Ad-
ditionally, the plants in the DDF are also adapted to wild-fire. This
adaptation is reflected in the Dipterocarpaceae family, with its thicker
and harder bark relative to other species. This drives the higher var-
iation of bark biomass among the plant species, genera, and family in
the DDF.

4.2. Independent vs. simultaneous model fit

The structure of the equation system ensures additivity, while fitting

Table 6
Comparison of K-fold cross validation statistics between two methods (independent and SUR fits) to fit selected AGB models for plant classification hierarchy-specific
levels.

Plant classification
hierarchy-specific level

Method to fit
the model

Selected model form Bias (%) RMSE (%) MAPE (%)

Mixed-species Independent AGB=a×Db×Hc×WDd −11.1 44.6 27.1
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11×Hb12×WDb13+ a2×Db21+ a3×Db31+ a4×Db41 −1.8 51.4 25.4

Dipterocarpaceae
family

Independent AGB=a×Db×Hc×WDd −9.9 41.7 26.4
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11×Hb12×WDb13+ a2×Db21+ a3×Db31+ a4×Db41 −5.9 36.2 27.7

Dipterocarpus genus Independent AGB=a×Db −12.2 46.3 29.2
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 −8.5 27.2 20.4

Shorea genus Independent AGB=a×Db −8.8 33.2 24.6
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 −3.4 23.8 20.9

Dipterocarpus
tuberculatus Roxb
species

Independent AGB=a×Db −13.4 47.2 31.5
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 −15.1 26.6 20.9

Dipterocarpus
obtusifolius Teijsm.
Ex Miq. species

Independent AGB=a×Db −10.5 36.8 25.8
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 −25.8 65.6 36.1

Shorea obtusa Wall.
species

Independent AGB=a×Db −4.4 22.3 18.0
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 −7.7 37.0 26.7

Shorea siamensis Miq.
species

Independent AGB=a×Db −13.3 41.5 33.8
SUR AGB=Bst+Bbr+Ble+ Bba= a1×Db11+ a2×Db21+ a3×Db31+ a4×Db41 7.0 20.9 18.5

Note: In K-fold with K=10 folds. Bst, Bbr, Ble, Bba and AGB are biomass of stem, branches, leaves, bark and total above-ground biomass, respectively.
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the system with SUR to deal with the correlation among equations may
achieve more efficient estimates. Compared to fitting models separately
(Tables 3 and 4 vs. Tables 5 and 6), the errors in AGB estimation im-
proved by fitting models as a system of equations with SUR. This

finding is consistent with Poudel and Temesgen (2016) that used SUR
systems to predict biomass components. These improvements are big-
gest at the genus-level (Table 6).

Additionally, with the variation of component biomass in the DDF,

Fig. 7. Simultaneously fit of biomass of tree stem (Bst), branches (Bbr), leaves (Ble), bark (Bba), and total aboveground biomass (AGB), using SUR for mixed species vs
observed entire datasets.
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the use of SUR better accommodates the interactions between the
parameters of the component models (Parresol, 2001; Poudel and
Temesgen, 2016), and reduced the uncertainty of parameter estimates
of the component models fitted. Therefore, we encourage the weighted
nonlinear SUR to develop simultaneous models for AGB and its com-
ponents in the tropical forests.

4.3. Mixed species vs genus-specific models

The simultaneous modeling systems for mixed species or
Dipterocarp family need all three predictors (D, H, andWD), meanwhile
in the modeling of genus-and species-specific systems, only D variable
was selected. This shows that the WD predictor is only necessary for the

Fig. 8. Simultaneously fit of biomass of tree stem (Bst), branches (Bbr), leaves (Ble), bark (Bba), and total aboveground biomass (AGB), using SUR for Dipterocarpus
genus vs observed entire datasets.
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mixed-species model rather than for genus and species (Basuki et al.,
2009; Huy et al., 2016b).

The genus-specific models fit by SUR significantly reduced un-
certainty compared with the mixed-species or family-specific models
(Table 6), meanwhile models at genus level only required a simple

variable D. It is also worth noting that the number of genera in DDF is
low; consequently, we recommend the use of genus-species modeling
systems for tropical DDF to improve reliability and reduce costs of field
measurement associated with species-specific models. This reinforces
the finding of Huy et al. (2016b).

Fig. 9. Simultaneously fit of biomass of tree stem (Bst), branches (Bbr), leaves (Ble), bark (Bba), and total aboveground biomass (AGB), using SUR for Shorea genus vs
observed entire datasets.
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4.4. Pantropic models vs. site-specific models and pantropic mixed-species
vs. pantropic genus-specific models

The K-Fold cross-validation with K= 10 was undertaken to validate
the performance of other allometric equations developed for the pan-
tropics (Chave et al., 2005, 2014), and Southeast Asia for the DDF
(Basuki et al., 2009) relative to the selected AGB equations fit by SUR in
this study. We did this for mixed species and genus-specific models

(Table 9).
The K-Fold cross-validation results showed the pantropical mixed-

species model developed by Chave et al. (2005) with D and WD pro-
ducing high errors and overestimated AGB versus AGB data evaluation,
whereas the models with all three variables D, H and WD (Chave et al.,
2005, 2014) gave the same errors as our AGB model fit by SUR in this
study. The Fit Index (FI) is high at approximately 0.93 (Table 9, Fig. 10,
above). The finding is also consistent with Rutishauser et al. (2013) in

Table 7
Estimated parameters to simultaneously predict AGB and its components for plant classification hierarchy-specific levels using SUR method (based on the entire
dataset).

Plant classification hierarchy-specific level Model form Parameter Estimate ± Approx. Std Error RMSE (kg) Adj. R2

Mixed-species Bst= a1×Db11×Hb12×WDb13 a1 0.02055 ± 0.00215 32.7 0.952
b11 2.35241 ± 0.03490
b12 0.59142 ± 0.03210
b13 0.69609 ± 0.07980

Bbr= a2×Db21 a2 0.00669 ± 0.00190 36.4 0.824
b21 2.85742 ± 0.07880

Ble= a3×Db31 a3 0.03701 ± 0.01310 3.5 0.694
b31 1.68095 ± 0.09680

Bba=a4×Db41 a4 0.01541 ± 0.00445 23.1 0.744
b41 2.43959 ± 0.08360

AGB=Bst+ Bbr+Ble+ Bba idem idem 68.5 0.939

Dipterocarpaceae family Bst= a1×Db11×Hb12×WDb13 a1 0.02548 ± 0.00390 32.7 0.961
b11 2.25377 ± 0.04780
b12 0.69531 ± 0.03900
b13 0.95381 ± 0.12130

Bbr= a2×Db21 a2 0.01097 ± 0.00356 41.1 0.827
b21 2.73663 ± 0.08850

Ble= a3×Db31 a3 0.04559 ± 0.01490 3.7 0.696
b31 1.63322 ± 0.09000

Bba=a4×Db41 a4 0.00399 ± 0.00174 25.2 0.758
b41 2.83670 ± 0.11690

AGB=Bst+ Bbr+Ble+ Bba idem idem 72.1 0.946

Dipterocarpus genus Bst= a1×Db11 a1 0.01831 ± 0.00348 43.9 0.945
b11 2.76361 ± 0.05260

Bbr= a2×Db21 a2 0.00481 ± 0.00220 47.6 0.827
b21 2.96217 ± 0.12500

Ble= a3×Db31 a3 0.08921 ± 0.02840 4.3 0.691
b31 1.43840 ± 0.09600

Bba=a4×Db41 a4 0.00116 ± 0.00040 24.4 0.843
b41 3.19340 ± 0.09160

AGB=Bst+ Bbr+Ble+ Bba idem idem 88.1 0.940

Shorea genus Bst= a1×Db11 a1 0.03925 ± 0.01190 42.1 0.807
b11 2.47118 ± 0.09070

Bbr= a2×Db21 a2 0.02130 ± 0.00631 16.7 0.900
b21 2.49004 ± 0.08800

Ble= a3×Db31 a3 0.05119 ± 0.01070 2.1 0.634
b31 1.50629 ± 0.05890

Bba=a4×Db41 a4 0.31967 ± 0.09090 9.9 0.649
b41 1.47380 ± 0.09610

AGB=Bst+ Bbr+Ble+ Bba idem idem 60.2 0.863

Note: Bst, Bbr, Ble, Bba and AGB are biomass of stem, branches, leaves, bark and total above-ground biomass, respectively. All parameters with pvalue < 0.05.

Table 8
Estimated parameters for sole predictor of diameter at breast height (D) to estimate simultaneously AGB and its components for mixed species using SUR method
(based on the entire dataset).

Model form Parameter Estimate ± Approx. Std Error RMSE (kg) Adj. R2

Bst= a1×Db11 a1 0.02384 ± 0.00262 42.8 0.917
b11 2.67666 ± 0.03020

Bbr= a2×Db21 a2 0.00748 ± 0.00207 36.5 0.824
b21 2.82670 ± 0.07660

Ble= a3×Db31 a3 0.03874 ± 0.01290 3.5 0.693
b31 1.66726 ± 0.09140

Bba= a4×Db41 a4 0.01827 ± 0.00521 23.4 0.738
b41 2.38654 ± 0.08340

AGB=Bst+ Bbr+Ble+Bba idem idem 80.6 0.916
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Indonesia who used the pantropical model developed by Chave et al.
(2005) and found that including tree height provided the best biomass
estimates for locally measured samples of AGB. However, it is different
from the recommendations of Huy et al. (2016b,c) and Basuki et al.
(2009) who suggested the site-specific is better than pantropics models.

Meanwhile, site-specific models for mixed species in the DDF de-
veloped by Basuki et al. (2009) in Indonesia gave high errors and
substantially overestimated AGB using our dataset (Table 9; Fig. 10,
above). This suggests that site-specific models do not transfer well
across ecological regions.

Validations for genus-specific models of both Dipterocarpus and

Shorea published by Basuki et al. (2009) in Indonesia using our dataset
showed that those genus-specific models produced FI values and pre-
dicted AGB values very similar to the genus-specific models developed
in this study (Table 9 and Fig. 10, below). This result confirms the
finding of Huy et al. (2016b) that genus-specific models can perform
well at different site conditions.

Pantropical genus-specific models will improve the reliability
compared to pantropical mixed species models (Table 9). Bias, RMSE
and MAPE were remarkably reduced using our newly developed genus-
specific models, these models achieved −1.6%, 27.6% and 4.5% re-
spectively (Table 9).

Fig. 10. Plots of Fitted/Predicted AGB vs Observed AGB: top: Comparison of selected model fit by SUR of this study for the same mixed species with other models in
different regions, pantropic in dry dipterocarp forest, all forest types; bottom panel from left to right: Comparisons of selected models of this study with other models
developed in Indonesia with the same Dipterocarpus and Shorea genus, respectively.
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5. Conclusion

Developing simultaneous modeling systems using SUR for AGB and
its components in the DDF produced substantially lower uncertainty
than models developed separately. The forms of simultaneous modeling
systems for estimating AGB and its components were developed and
selected at different taxonomic hierarchies and as follows:

For mixed species and dominant Dipterocarpaceae family:

= × × × + × + × + ×AGB a D H WD a D a D a D .b b b b b b
1

11 12 13
2

21
3

31
4

41

For dominant genera of Dipterocarpus and Shorea:

= × + × + × + ×AGB a D a D a D a Db b b b
1

11
2

21
3

31
4

41

In comparison to the mixed species modeling system, genus-specific
modeling systems substantially improved the reliability of AGB and
component predictions. It will also reduce the cost of application be-
cause only one variable D, is required for measurement; the pantropical
genus-specific modeling systems are more reliable than pantropical
mixed species models.
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