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A B S T R A C T   

Aboveground biomass (AGB) and carbon uptake of a forest are key ecological indicators for various technical and 
scientific applications and sustainable forest management. Deep Learning (DL) methods have been considered as 
alternative to regression techniques to increase the reliability of tree AGB prediction. The objectives were to 
develop DL models to predict AGB in the tropical evergreen broadleaf forests and compare DL models with 
traditional regression equations for their reliability in AGB prediction. A total of 968 individual trees were 
destructively sampled from fourteen 1-ha and twenty-six 0.2-ha plots distributed across five ecoregions of Viet 
Nam to get a dataset of tree predictors of diameter at breast height (DBH), tree height (H), wood density (WD) 
and the response variable of AGB along with forest stand factors of basal area (BA) and density (N); ecological 
and environmental variables such as ecoregion, slope, altitude, soil type, averaged annual temperature (T), aver-
aged annual rainfall (P) and averaged dry season length. The DL models were developed using different combi-
nations of variables selected by factor analysis for mixed data and compared with traditional regression 
equations by using cross-validation. Trees AGB in tropical rainforest predicted by DL models had significantly 
higher reliability than the conventional regression equations when both had the same input variables. Of the 16 
developed DL models with 1 to 9 predictors, the model with 9 predictors (DBH, H, Ecoregion, Altitude, P, T, Soil 
type, N and WD) was the best DL model which reduced root mean square percent error (RMSPE) and mean 
absolute percent error (MAPE) by up to 7.7% and 6.1%, respectively, compared to traditional allometric 
equations. The DL models created in this study should be applied for measured tree data following factors of the 
forest stand, ecology, and environment in sampled plots to predict the tree AGB and total AGB, carbon on a large 
scale with variation in the value of these factors. Thus, we recommend that the DL models apply for the Mea-
surement, Reporting, and Verification (MRV) system of the Reducing Emissions from Deforestation and forest 
Degradation (REDD+) program at a large regional level, national or territorial level scale.   

1. Introduction 

Forests play an important role in mitigating climate change through 
carbon sequestration. Therefore, carbon stored in the forest tree 
aboveground biomass (AGB) is a key ecological indicator (Bosela et al., 
2021) for various technical and scientific applications ranging from 
regional carbon and bioenergy policies to sustainable forest 

management (Temesgen et al., 2015; Huy et al., 2016a,b,c, 2019; Zhang 
et al., 2019, 2020; Nguyen and Kappas, 2020). 

To implement the program on Reducing Emissions from Deforesta-
tion and forest Degradation (REDD+), Measurement, Reporting, and 
Verification (MRV) is required for emissions and removals from forests. 
Estimates of their change over time are also needed with the most 
transparent and accurate approach possible (Pelletier et al., 2012; 
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Montano et al., 2017). The participating developing countries must 
conduct complete MRV to receive results-based financing for RED-
D+implementation (U.N., 2015). 

Currently, the biomass and carbon accumulated in tropical forest 
trees are estimated mainly from regression models. These include 
equations developed either for pan-tropics (Brown, 1997; IPCC, 2003; 
Chave et al., 2005, 2014), for each sub-tropical ecoregion and forest type 
(Basuki et al., 2009; Huy et al., 2016b), and woody vegetation taxa such 
as species, genera, and family-specific biomass modeling systems 
(Basuki et al., 2009; Huy et al., 2016c, 2019). Mankou et al. (2021) 
compiled common allometric equations reported across the tropics to 

predict tree AGB from common dendrometric measurements such as 
diameter at breast height (DBH), tree height (H), and wood density 
(WD). The power function has often been used to estimate the AGB of 
tropical forest trees using one or more tree predictors. Brown (1997) and 
IPCC (2003) used a single variable, DBH; Basuki et al. (2009) used two 
variables DBH and WD; and Chave et al. (2005, 2014), Huy et al. (2016a, 
b,c, 2019) used three variables DBH, H, and WD. 

The level of prediction error associated with AGB regression models 
has varied across studies, forest types, the generality of the models. For 
example, Huy et al. (2016a,b) reported that the cross-validation mean 
absolute percent errors (MAPE) of the AGB prediction equations for 

Fig. 1. Studied sample plots in five ecoregions in Viet Nam.  
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evergreen broadleaf forest (EBLF) in Viet Nam fluctuated around from 
19.5 up to 36.9%. Increasing the number of predictors or adding random 
effects of key ecological and environmental factors helped reduce error 
and improve the estimated AGB reliability for the EBLF type. In addition, 
models that are specific to each ecological region (Huy et al. 2016b), 
territory or country (Huy et al. 2016a), or forest type, ecological region 
(Huy et al., 2016c) provided high reliability compared to pan-tropical 
models. 

The AGB power models are either fitted in a linear form after log- 
transformation or as non-linear fixed-effect models. These models 
have also been fit as weighted non-linear mixed effect models using 
maximum likelihood and incorporating random effects of environ-
mental and ecological factors (Huy et al. 2016a). Kralicek et al. (2017) 
and Huy et al. (2019) used seemingly unrelated regression (SUR) for 
simultaneously estimating either tree AGB - belowground biomass 
(BGB) or AGB and its components. The weighted non-linear models set 
up for each ecological region, territory, with three predictors DBH, H 
and WD, and considering the random effects of environmental and 
ecological factors, the MAPE was still high of around 20% (Huy et al., 
2016a,b). While applying weighted non–linear SUR models for each 
forest type and ecological region, based on taxon-specific model (family, 
genus, and dominant species), the error was decreased, but the MAPE 
was still high, ranging from 18.5 to 27.1% (Huy et al., 2019). Therefore, 
the search for methods to improve reliability and reduce the error of the 
AGB prediction of the EBLF is necessary and follows the IPCC re-
quirements (2003, 2006). 

Deep Learning (DL) is a subset of machine learning (ML) which is an 
important branch of Artificial Intelligence (AI) (Ganatra and Patel, 
2018). There has been a revolution in ML applications because of the 
introduction and advancement of DL (Kumar and Garg, 2018; Krie-
geskorte and Golan, 2019). ML is widely used in satellite image inter-
pretation combined with ground data to estimate forest stand variables 
and forest biomass (Dang et al., 2019; Zhang et al., 2019, 2020; Nguyen 
and Kappas, 2020). DL provides a more adaptive way of using deep 
neural networks (DNNs) to learn a function from a given input and allow 
the machine to make decisions. Inputs can be of any kind, structured or 
unstructured. DL models can produce consistent results without human 
intervention, making them promising for solving real-time problems 
(Ganatra and Patel, 2018). Therefore, DL has been successfully applied 
in many major fields. ML and its DL methods have recently been applied 
for estimating tree volume and have proven to have better accuracy than 
regression (Mushar et al., 2020). 

The ML and its DL methods are increasingly being applied in forest 
ecological sciences such as species distribution model, carbon cycle 
assessment, and climate and environmental change prediction on forest 
ecosystems (Liu et al. 2018). As it is known, the ecological relationships 
among the components of the tropical forest ecosystem are complex. 
Therefore, if only traditional regression models are applied, it is difficult 
to detect the complex relationships of the ecosystem and biological 
processes. Future applications of ML and its DL in forest ecology will 
become increasingly attractive techniques for ecologists (Liu et al. 
2018). 

Traditional modeling approaches have a great capacity to quantify 
and predict carbon cycles and can be upscaled from local to regional or 
global scales. However, the adaptability of these models is typically 
unsatisfactory, which generally leads to uncertain predictions if spatial 
and temporal scales change. ML and its DL techniques can be used to 
address forestry problems where climate and environmental conditions 
are diverse and complex (Liu et al., 2018). Therefore, DL needs to be 
considered an alternative to regression techniques (Montano et al., 
2017) to improve the prediction of AGB. Nevertheless, up to now, there 
have been very few publications applying ML, specifically DL to bio-
metric science for estimating tree volume, biomass in tropical rain for-
ests. For example, Mushar et al. (2020) used the ML technique to 
estimate tree volume and found that it produced a better precision and 
accuracy than the regression method. Ogana and Ercanli (2021) showed 

that using equations to model the relationships between tree height and 
diameter in complex rainforest ecosystems remains a challenge, while 
DL algorithm models that were used to predict tree height as a predictor 
for estimating tree AGB, overperformed other classical regression 
techniques. 

In this study, we hypothesize that the DL approach to predict tree 
AGB of tropical rain forests based on multivariate data consisting of tree- 
level predictors, forest stand factors, and forest ecological and envi-
ronmental variables would provide significantly higher reliability than 
traditional regression equations on a limited number of tree-level pre-
dictors. The objectives of this study were to 1) develop DL models to 
predict AGB in the tropical EBLFs and 2) compare DL models with 
traditional regression equations for their reliability in AGB prediction. 
The contribution of this study is to document DL techniques and their 
use to improve the reliability of AGB predictions in complex tropical 
forests. 

2. Materials and methods 

2.1. Study sites 

This study used the dataset published by Huy et al. (2016a) and 
added data on forest stand attributes and ecological and environmental 
factors. The dataset was collected in five out of eight agro-ecological 
regions of Viet Nam, containing most of the country’s forest cover: 
northeast (NE), north-central coastal (NCC), central highlands (CH), 
south-central coastal (SCC), and southeast (SE). These ecoregions span a 
range of ecological, climatic, and structural site characteristics and are 
the main sites of the EBLFs (Fig. 1). 

2.2. Sampling design and data collection 

Fourteen 1-ha (100 × 100 m) and twenty-six 0.2-ha (20 × 100 m) 
sample plots were established in the five ecoregions CH, NCC, NE, SCC 
and SE, where the majority of the country’s EBLFs are distributed. 
Within a plot, species and DBH (cm) were recorded for all trees larger 
than 5 cm (1.3 m above ground). Sample trees were selected from each 
plot and harvested for tree AGB (kg tree− 1) measurement. Sample tree 
selection focused on the main dominant species and the number of trees 
sampled according to the proportion of the diameter distribution. In 
total, 968 trees ranging from 4.7 to 87.7 cm DBH and 3.9 to 41.4 m H 
were destructively sampled. Detailed sampling and measurement pro-
cedure was given in Huy et al. (2016a). Table 1 shows summary statistics 
for the three predictors of DBH (cm), H (m), WD (g cm− 3), and the 
response variable AGB of the destructive sample trees. 

Table 1 
Summary statistics of variables used to develop tree aboveground biomass 
models in this study.  

ID Variables Min Mean Max Std. 

1. AGB (kg tree− 1) 2.9 553.7 8633.0  917.5 
2. DBH (cm) 4.7 25.0 87.7  17.2 
3. H (m) 3.9 17.4 41.4  7.2 
4. WD (g cm− 3) 0.166 0.547 0.964  0.139 
5. BA (m2 ha− 1) 9.0 30.9 49.0  10.1 
6. N (tree ha− 1) 370.0 938.9 3330.0  416.3 
7. Ecoregion (code) 1.0 2.5 5.0  1.3 
8. Slope (degree) 0.0 18.8 40.0  11.3 
9. Altitude (m) 154.0 547.4 1335.0  280.7 
10. Soil type (code) 1.0 2.2 3.0  0.9 
11. T (0C averaged) 16.9 22.8 25.0  2.1 
12. P (mm year− 1 averaged) 1055 1962 2500  421.2 
13. Dry season length (month averaged) 1.0 3.6 5.0  1.2 

Note: Summary statistics based on a dataset of n = 968 destructive sampled trees 
in 40 sample plots located in 5 ecological regions of EBLFs distribution. 
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2.3. Input dataset and variable selection 

In this study, the input data layers consisted of observed AGB and 
multiple predictor variables. Individual tree measurements were DBH, 
H, and WD, and stand-level variables were basal area (BA, m2 ha− 1) and 
density of trees with DBH ≥ 5 cm (N, tree ha− 1). Ecological and envi-
ronmental variables included ecoregion, slope, altitude, soil type, 
averaged annual temperature (T, oC), averaged annual rainfall (P, mm 
year− 1), and averaged dry season length (month). 

Forest stand variables of BA and N were calculated from data of 
sample plots. Ecoregions were encoded 1 to 5 corresponding to NE, NCC, 
CH, SCC, and SE, respectively. Slope in degree and altitude in meter 
were also recorded at the sampled plots. Soil types, including crystalline 
shists, igneous rocks, and sedimentary rocks (Fischer et al., 2008) and 
were encoded as 1, 2 and 3, respectively. Data on T, P, and dry season 
length were determined from the coordinates of the sample plots based 
on Hijmans et al., (2005) as well as Fick and Hijmans (2017). Table 1 
presents the summary statistics of 13 input variables that were used in 
the study. 

The dataset included both numerical (11 variables as observed AGB, 
DBH, H, WD, BA, N, Slope, Altitude, P, T, and Dry season length) and 
categorical variables (two variables as Ecoregion and Soil type). To 
identify the factors that account for the highest variability in the AGB 
among the 12 predictive variables (3 tree-level predictors, 2 stand fac-
tors, and 7 ecological and environmental variables), we used factor 
analysis for mixed data (FAMD) using the FAMD package in R version 
4.0.5 (R Core Team, 2021). FAMD was applied to reduce predictive 
variables and increase the interpretability of multiple factors affecting 
forest tree AGB. FAMD is a principal component method and is appro-
priate when dealing with both numerical and categorical variables. Used 
to examine the association between both numerical and categorical 
variables, FAMD is a hybrid approach between principal component 
analysis (PCA) and multiple correspondence analysis (MCA) (STHDA, 
2021; Pages, 2004; R Core Team, 2021). The variables were normalized 
during the analysis, the numerical variables were scaled to unit 

variance, and the categorical variables were transformed into a crisp 
coding and then scaled using MCA. This ensures to balance of the in-
fluence of both numerical and categorical variables in the analysis (R 
Core Team, 2021). 

2.4. Deep learning for predicting tree AGB 

Artificial Neural Network (ANN) is a DL technique that has recently 
attracted great attention. ANN has been used to model the relationship 
between independent input variables and dependent output variables 
simulating the learning of the biological neural system. Various types of 
ANN can be applied in different problem domains. The feed-forward 
structure of ANN has been widely used in many applications (Kumar 
and Garg, 2018). A DNN is a variant of multilayer feed-forward ANN. 
Almost all current DL applications are built upon DNNs (Zhou and Feng, 
2019). It has more than one hidden layer between the input and output 
layers (Kumar and Garg, 2018; Chollet, 2018; Kriegeskorte and Golan, 
2019). 

DL is a mathematical framework for learning representations from 
data (Chollet, 2018), it is a computational process involving multiple 
layers to learn how to represent data with multiple levels of abstraction. 
DL explores complex structures in large data sets using back-propagation 
algorithms to change the internal parameters used to compute the rep-
resentation in each layer compared to the representation in the previous 
layer (LeCun et al., 2015). DL models are multi-layered DNNs with 
hidden layers and hundreds to thousands of neurons. The DNNs repre-
sent a more complex structure similar to the human brain than those of 
ANNs (Ogana and Ercanli, 2021). The DL algorithm passes input data 
across several layers; each layer can extract features progressively and 
pass them on to the next layer. This process enables very complex re-
lations functions among input variables that can be learned to form a 
complete output layer representation (Mathew et al., 2021; LeCun et al., 
2015). The specification of what a layer does with its input data is stored 
in the weights of the layer. The transformation is performed by a layer 
parameterized by its weights. In this process, learning means finding a 

Input layer:
Observed AGB, predictive 

ecological & 
environmental variables

Hidden layers Output layer: 
Predicted AGB

Fig. 2. Deep Neural Network for predicting tree aboveground biomass (AGB) as output with tree, stand, ecological, and environmental variables as input predictors 
of AGB. 
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set of values for the weights of all layers in a network. To control the 
output of a DNN, a loss function of the network is used. The loss function 
takes the predictions of the network and compares them with the real 
outputs and calculates the differences to obtain how well the network 
has performed (Chollet, 2018). 

The architecture of the DNN used in this study is presented in Fig. 2. 
The DL models were trained by input data layers (Ogana and Ercanli, 
2021) consisting of observed AGB and different combinations of the 
tree-level variables of tree predictors, forest stand, and ecological, 
environmental factors identified by the FAMD method, and the output 
data layer was AGB predicted. 

DL algorithms work with numerical and categorical variables. 
However, the categorical variables need to be encoded for DNN 
(Dahouda and Joe 2021). In this study, the dataset for the DL process 
included both numerical variables (Observed AGB, DBH, H, Altitude, P, 
T, N, and WD) and categorical variables (Ecoregion and Soil type). We 
used One- Hot Encoding technique to apply these two categorical vari-
ables as inputs to deep learning algorithms (Dahouda and Joe 2021; 
Hayashi, 2020; Potdar et al., 2017; Hancock and Khoshgoftaar, 2020). 
All numerical input variables were scaled (Guo and Berkhahn 2016) by 
dividing by their maximum values and were within the range [0, 1]. This 
ensures to balance of the influence of all input variables in the DL 
process. 

The learning process of the DNN is described as follows (Kumar and 
Garg, 2018): 

yproduct1 =
∑n

i=1
Ii × wi + ε1 (1)  

Yproduct =
[
yproduct1, yproduct2,⋯.., yproductm

]
(2)  

youtput1 = f

(
∑n

i=1
Ii × wi + ε1

)

(3)  

Youtput =
[
youtput1, youtput2,⋯.., youtputm

]
(4)  

where yproduct m is defined as the cross product of the input vector I = [I1, 
I2, … Ii .., In], n is the number of input variables, and wi is the weight on 
interconnection along with Ii with and ε is the bias value, m is number of 
neurons of the network, Yproduct is the product vector, f is the activation 
function used at the neuron, and youtput m is the output of the neuron and 
Youtput is the output vector. 

Keras library – deep learning Application Programming Interfaces 
(API) was used in free open-source Python (2021) for developing and 
evaluating deep learning models (Kumar and Garg, 2018; Chollet, 
2018), and TensorFlow backend was applied for most deep learning 
needs (Chollet, 2018; Ganatra and Patel, 2018). 

In this study, DL was performed with three hidden layers (layers of 
nodes between the input and output layers), including 512 neurons in 
each hidden layer. The number of epochs is a hyperparameter on which 
the learning algorithm works through the entire training dataset and is 
set to 5000 times. The batch size is a hyperparameter, which is the 
number of samples to work through before updating the internal model 
parameters was defined to be 64 samples. Thus, for 775 training samples 
(80% random dataset), an epoch comprised 775/64 = 12 batches. The 
DL used a ReLU activation function for the hidden layers and a linear 
activation function for the output and applied Adam’s optimization al-
gorithm (Kingma and Ba, 2015; Jais et al., 2019; Zaheer and Shaziya, 
2019) to select the best fit between predicted and actual outputs. The DL 
process used 193 validation samples (20% random dataset) and loss 
function as the MAPE to select the best DL model. In addition, an early 
stop function with patience set at 1000 was used to stop the training 
when validation loss did not decrease further before the model was 
overfitted. 

2.5. A non-linear fixed and mixed model with separate variable random 
effect 

Huy et al. (2016a) used DBH, WD, and H as the covariates of the 
power model for estimating AGB. The Furnival index (Furnival, 1961) 
was used to compare the performance of log-linear and weighted non- 
linear models. As a result of that comparison, non-linear models were 
selected. Weighted non-linear models allow flexibility in model forms 
and can account for the heterogeneity of errors (Davidian and Giltinan, 
1995; Picard et al., 2012; Huy et al., 2016b, 2019). 

The models of Huy et al. (2016a) were fit based on the Maximum 
Likelihood procedure in R statistical software using the nlme package 
(Bates, 2010; Picard et al., 2012; Pinheiro et al., 2014), and model di-
agnostics were conducted using the ggplot2 package (Wickham and 
Chang, 2013). The general form of the AGB model was (Huy et al., 
2016a): 

Yij =
(
a + αj

)
× Xij

(b+βj) + εij (5)  

εij ∼ iidN
(
0, σ2) (6)  

where Yij was the AGB (kg tree− 1) for the ith tree from the jth class of a 
variable/factor; and a and b were the fixed effect parameters of the 
model; αj and βj were parameters associated with the jth class of a var-
iable; Xij was the covariate DBH (cm), H (m), WD (g/cm3), DBH2H (m3), 
or DBH2HWD (kg) for the ith tree in the jth class of a variable; and εij was 
the random error associated with the ith tree from the jth class of a var-
iable. For example, the independent combined variables DBH2H =
(DBH/100)2 × H and DBH2HWD = DBH2H × WD × 1000 were ap-
proximations of volume and AGB, respectively. 

The variance function was as follows (Huy et al., 2016a): 

Var(εij) =σ̂2
(
νij
)2δ (7)  

where σ̂2 was the estimated error sum of squares;νij was the weighting 
variable (DBH, DBH2H, or DBH2HWD) associated with the ith tree from 
the jth class of the random effect; and δ was the variance function co-
efficient to be estimated. 

Huy et al. (2016a) mainly used random effects of ecoregion on model 
parameters to test and evaluate their influence in the allometric rela-
tionship. Ecoregion at five levels (NE, NCC, CH, SCC, SE) represented the 
influence of ecological and climatic factors on AGB. 

2.6. Non-linear fixed model with a combination of factors 

Mixed-effects AGB model with random effects mentioned above set 
up a single model for each environmental and climatic factor (Huy et al., 
2016a). Meanwhile, these factors interact and have synergistic effects on 
AGB. Therefore, the fixed-effects model with a combination of ecological 
and environmental variables was examined and compared with DL 
model performance in AGB prediction. 

In this study, the form of the AGB model consisted of two compo-
nents, an average AGB model and a modifier (Lessard et al. 2001; Huy 
et al., 2020) as follows: 

AGB = AVERAGE × MODIFIER (8)  

where AVERAGE was the best equation selected by Huy et al. (2016a): 

AVERAGE = a ×
(
DBH2 × H × WD

)b (9)  

MODIFIER =
∏n

j=1
exp
(
factorj − average value of factorj

)
(10) 

The modifier is an exponential function involving forest stand, 
ecological, and environmental factors as additional covariates. The 
modifier adjusts AGB based on the combined effects of these factors. In 
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this study, n factors consisted of variables that significantly affect AGB 
and were selected by the FAMD method. Average values of the variables 
presented in Table 1 were incorporated into the modifier. The model in 
(8) was fitted as weighted non-linear fixed-effects models with weight-
ing variable DBH fit by the maximum likelihood (Bates, 2010; Pinheiro 
et al., 2014) using nlme package in R version 4.0.5 (R Core Team, 2021). 

2.7. Cross-validation 

The dataset was randomly split into two parts, with 80% for training 
and 20% for validation. The cross-validation process was repeated 10 
times and the model performance was averaged over 10 realizations. 
The goodness-of-fit statistic used to validate, compare, and select models 
were R2 or Fit Index (FI) (Parresol, 1999). The closer the FI is to 1, the 

better the model. 

FI =
1
R

∑R

r=1

(

1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2

)

(11) 

Along with FI, bias (%), root mean square error (RMSE, kg), root 
mean square percent error (RMSPE, %), and mean absolute percent error 
(MAPE, %) were calculated. Smaller values for indicators are preferred. 

Bias(%) =
1
R
∑R

r=1

100
n
∑n

i=1

yi − ŷi

yi
(12)  

RMSE(kg) =
1
R
∑R

r=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(13) 

Fig. 3. Factor analysis for mixed data (FAMD): Contribution of mixed numerical and categorical variables to principal dimension 2. The dashed line indicates the 
expected average value. 

Fig. 4. Mean absolute percent error (MAPE, %) of training and validation vs. the number of epochs for deep learning model with all selected 10 input variables: 
Observed AGB, DBH, H, Ecoregion, Altitude, P, T, Soil type, N, and WD. 
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RMSPE(%) =
1
R

∑R

r=1
100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
yi − ŷi

yi

)2
√

(14)  

MAPE(%) =
1
R

∑R

r=1

100
n

∑n

i=1

|yi − ŷi |

yi
(15)  

where R was the number of realization (10); n was the number of 
sampled trees of validation dataset; and yi, ŷi and y were observed, 
predicted, and averaged AGB (kg tree− 1) for the ith sampled tree in 
realization R, respectively. 

The diagnostic plots of the trend of fitted vs. observed AGB data and 
residuals vs. fitted AGB were also used to assess the model performance. 

Fitting models with the entire dataset obtained final parameter esti-
mates for all the selected fixed effect modeling systems. Meanwhile, the 
DL model with the smallest error was saved in Python code. Then, the 
best DL model was used to predict tree AGB with a selected multivariate 
variable with code written in Python language. 

3. Results 

3.1. Multiple variables affect tree AGB 

Based on the results of FAMD, five principal dimensions explained 
76.7% of the variability in the original data. The second principal 
dimension was selected because the contribution of the AGB variable 
was the highest. Fig. 3 shows the contribution of variables to principal 
dimension 2, in which there were five variables namely DBH, H, AGB, 
Ecoregion, and Altitude that contribute the most. Meanwhile, three var-
iables BA, Slope, and Dry season length showed the lowest effects, so these 
three factors were excluded, and the remaining 10 factors of observed 
AGB, DBH, H, Ecoregion, Altitude, P, T, Soil type, N, and WD were 
considered in AGB modeling and DL process. 

3.2. Deep learning models for predicting tree AGB 

The MAPE for the DL model with 10 input variables selected through 
FAMD was nearly identical and saturated (Fig. 4) for training and vali-
dation datasets when the epoch numbers reached over 4000 times. We 
developed 16 DL models for AGB prediction based on different combi-
nations of 2 to 10 input variables through FAMD results. The DL models 
were first established with two input variables: observed AGB and DBH 
and gradually increased to include all 10 input variables (Table 2). 

The cross-validation results for the best and average model of 10 
realizations are presented in Table 2. The errors such as RMSPE and 
MAPE of the DL model with 10 input variables selected by FAMD, 
including observed AGB, DBH, H, Ecoregion, Altitude, P, T, Soil type, N, 
and WD were almost the lowest. When forest stand, ecological and 
environmental variables were gradually eliminated from the models, the 
errors are increased. The plots of fitted vs. observed AGB and residuals 
vs. fitted AGB are shown in Fig. 5. The DL model that had 10 optimal 
input variables mentioned provided the best prediction of the tree AGB 
with FI = 0.957, Bias = 4.6%, RMSPE = 19.1% and MAPE = 15.0%. 

3.3. Comparison of deep learning and regression methods 

Results from comparing bias, RMSPE, and MAPE in predicting AGB 
based on one to three tree predictors such as DBH, H, and WD and mixed- 
effects models with the random effects of the ecoregion Huy et al. 
(2016a) with the DL models are presented in Tables 3 and 4, respec-
tively. Variables T and N were insignificant parameters with P values 
greater than 0.05 when the regression model was set up with the com-
bination of 9 independent variables including DBH, H, WD, Ecoregion, 
Altitude, P, T, Soil type, and N affecting AGB as determined by FAMD 
method (Table 5). Therefore, the equation was developed with eight 
optimal input variables, including observed AGB, DBH, H, WD, Ecor-
egion, Altitude, P, and Soil type (Table 5). 

To compare the reliability of using the DL model and allometric 
equation (Table 5 and Fig. 6), we used the FI index and errors from cross- 
validation. From there, to predict tree AGB through regression equation, 
use the model with optimal predictors, presented in Table 5 and Fig. 6. 
Table 6 shows parameter values of regression with optimal predictors 
and its equation, which are presented as follow:   

Table 2 
Deep learning models – Cross-validation statistics in predicting AGB from the 
best and mean results based on different combinations of input variables.  

ID Input 
variables 

FI RMSE 
(kg) 

Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

1. Input 10 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P, T, Soil type, N 
and WD 
Best result  0.957  170.2  4.6  19.1  15.0 
Mean result  0.934  229.6  0.7  24.0  17.4 

2. Input 9 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P, T, Soil type, and 
N 
Best result  0.941  253.8  2.6  27.8  21.3 
Mean result  0.910  271.0  3.1  30.3  22.9 

3. Input 8 variables: Observed AGB, DBH, H, WD, Ecoregion, Altitude, P, and Soil 
type 
Best result  0.956  142.1  − 0.6  23.7  15.9 
Mean result  0.918  254.7  1.1  25.8  18.2 

4. Input 8 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P, T and Soil type 
Best result  0.931  253.2  3.1  29.9  22.0 
Mean result  0.896  282.2  3.9  30.1  23.1 

5. Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P and Soil type 
Best result  0.899  247.8  2.7  29.2  21.6 
Mean result  0.905  255.3  3.7  30.3  22.9 

6. Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P and T 
Best result  0.920  223.3  2.7  29.1  21.7 
Mean result  0.895  278.7  3.9  29.9  23.2 

7. Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P and WD 
Best result  0.939  225.8  3.0  20.1  15.4 
Mean result  0.928  234.7  2.4  23.7  17.4 

8. Input 6 variables: Observed AGB, DBH, H, Ecoregion, T and WD 
Best result  0.863  366.2  3.4  21.1  16.6 
Mean result  0.903  288.1  2.6  24.6  17.7 

9. Input 5 variables: Observed AGB, DBH, H, Ecoregion and Altitude 
Best result  0.895  278.5  6.0  26.5  22.4 
Mean result  0.865  322.2  4.4  30.8  23.7 

10. Input 5 variables: Observed AGB, DBH, H, WD and Ecoregion. 
Best result  0.918  214.4  1.2  20.8  15.7 
Mean result  0.918  252.4  1.7  24.6  17.6 

11. Input 4 variables: Observed AGB, DBH, H, WD. 
Best result  0.910  262.9  4.6  22.2  17.0 
Mean result  0.914  252.7  3.2  24.3  18.1 

12. Input 4 variables: Observed AGB, DBH, H, and Ecoregion. 
Best result  0.863  309.2  3.9  28.3  22.4 
Mean result  0.885  304.8  4.8  31.0  24.3 

13. Input 4 variables: Observed AGB, DBH, WD, Ecoregion. 
Best result  0.941  244.6  2.8  24.2  17.7 
Mean result  0.908  256.9  2.2  27.4  19.8 

14. Input 3 variables: Observed AGB, D, WD. 
Best result  0.915  213.0  3.5  24.2  18.8 
Mean result  0.890  314.4  2.8  28.1  20.7 

15. Input 3 variables: Observed AGB, DBH, H. 
Best result  0.885  338.3  5.0  27.9  21.8 
Mean result  0.876  318.4  4.6  30.8  24.3 

16. Input 2 variables: Observed AGB, DBH. 
Best result  0.884  277.0  2.4  30.9  24.5 
Mean result  0.840  369.7  6.0  33.7  26.6 

Note: Cross-validation with 10 realizations, each repeating the dataset of 968 
samples was split randomly into 80% for training and 20% for validation; sta-
tistics, errors in mean result were averaged over 10 times, and the best result was 
selected out of 10 validation results. 
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4. Discussion 

4.1. Deep learning vs. regression for predicting AGB of tropical forest trees 

DL has been scarcely applied in biometric science to predict forest 
tree biomass and carbon. This study showed that DL models significantly 
improved the predictive reliability of tree AGB in tropical EBLFs 
compared to traditional allometric equations (Tables 3, 4, 5). 

The DL models provided significantly better reliability than allo-
metric equations for AGB predictions based on one to three tree pre-
dictors (DBH, H, and WD). DL models reduced the MAPE between 2.6% 
and 6.1% compared with allometric equations (Table 3). While the 
regression equations and DL models had the same predictors, including 

the random effect of the ecoregion, the DL methods reduced the MAPE 
between 3.3% and 5.0% (Table 4). In other words, DL models reduced 
MAPE by up to 6.1% compared with the regression equations. 

FI index for the DL model with ten optimal input variables was 
approximately equal and greater than 0.95. The RMSPE and MAPE were 
up to 7.7 % and 4.2 % less than that produced by the regression models 
with eight optimal input variables, respectively (Table 5). In addition, 
Bland- Altman plot (Bland and Altman, 1999) demonstrated many 
values of differences between AGB predicted by DL and regression were 
outside an interval within which 95% of differences between predictions 
by the two methods are expected to lie, so this indicated the differences 
significantly between predicted AGB by DL model and regression 
equation with the optimal input variables (Fig. 7). This result confirms 

Input 10 variables: Observed AGB, DBH, H, Ecoregion, Altitude, 
P, T, Soil type, N and WD.

Input 9 variables: Observed AGB, DBH, H, Ecoregion, Altitude, 
P, T, Soil type, and N

Input 8 variables: Observed AGB, DBH, H, WD, Ecoregion, 
Altitude, P, and Soil type

Input 8 variables: Observed AGB, DBH, H, Ecoregion, Altitude, 
P, T and Soil type

Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P 
and Soil type

Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P 
and T

Fig. 5. Plots of deep learning models for a different combination of input variables: Fitted vs. Observed AGB (left); Residuals vs. Fitted AGB (right) based on the 
entire dataset. 

AGB = 0.079835 ×
(
DBH2 × H × WD

)0.938173
× exp(0.015205 × (Ecoregion − 2.5) + 0.000170 × (Altitude − 547) + 0.000182 × (P − 1962) + 0.016620

× (Soil type − 2.2))
(16)   
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the optimality when using the DL model under AI to predict AGB 
compared to the traditional regression method. 

The result of this study is consistent with the comments of Montano 
et al. (2017) that the AI models have superior capabilities of estimating 
and predicting the biomass of tropical forest trees compared to the 
regression-based allometric equations. In addition, heterogeneity errors 
and deviations from normality are common issues in regression for 
biomass estimation. The AI models are an effective alternative to the 
regression technique, especially tropical forest tree biomass. In this 
study, the DL method increased the predictive reliability of the tree AGB 
of the tropical forests by allowing many kinds of input complex nu-
merical and categorical variables, including tree predictors, forest stand 
factors, ecological and environmental variables. 

4.2. Variables that affect the prediction of AGB in tropical EBLF 

Most pantropical tree-level AGB equations are based on tree pre-
dictors such as DBH, H, and WD (e.g., Brown, 1997; IPCC, 2003; Chave 
et al., 2005, 2014; Basuki et al., 2009). Huy et al. (2016a) had the 
addition of the random effect of the ecoregion. Huy et al. (2016c, 2019) 
and Basuki et al. (2009) fitted the taxon-specific levels AGB equations. 

In tropical forests, many environmental and ecological factors affect 
allometric relationships (Cysneiros et al., 2021) of biomass accumula-
tion that have not been fully considered in the regression functions. This 

study indicated 9 independent variables/factors as DBH, H, Ecoregion, 
Altitude, P, T, Soil type, N, and WD influencing AGB. This result is 
consistent with Kassa’s (2015) findings that the carbon pools in 
aboveground exhibited distinct patterns along environmental gradients 
(altitude, slope gradient, and aspect); or included climatic factors rep-
resented by P and T variables, and Ecoregion, Soil type variables that 
allow DL model to address differences of unique regions; this is consis-
tent with Goslee et al. (2015). 

The taxon-specific AGB equations, such as models for dominant 
family, genus significantly improved the reliability of the AGB estimates 
(Basuki et al., 2009; Huy et al., 2016c, 2019; Mankou et al., 2021). 
However, in this study, the family and genus factors were eliminated. 
This is explained by the fact that the variable WD can represent these 
two taxon factors in the DL process. 

Trees in a higher mean altitude of 547 m had greater carbon uptake 
capacity of the tree AGB in the tropical EBLFs (Eq. (16)). Under the trend 
of tropical climate change (U.N., 2015), the P and T factors are changing 
and affect carbon sequestration in the tropical rain forests as demon-
strated by the Eq. (16) and optimal DL model. 

4.3. Application of deep learning models to predict tree AGB of the 
tropical EBLFs 

This study developed and evaluated 16 best DL models to predict tree 

Input 7 variables: Observed AGB, DBH, H, Ecoregion, Altitude, P 
and WD

Input 6 variables: Observed AGB, DBH, H, Ecoregion, T and WD

Input 5 variables: Observed AGB, DBH, H, Ecoregion and 
Altitude

Input 5 variables: Observed AGB, DBH, H, WD and Ecoregion

Input 4 variables: Observed AGB, DBH, H, WD Input 4 variables: Observed AGB, DBH, H, and Ecoregion

Fig. 5. (continued). 
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Input 4 variables: Observed AGB, DBH, WD, Ecoregion
Input 3 variables: Observed AGB, D, WD

Input 3 variables: Observed AGB, DBH, H Input 2 variables: Observed AGB, DBH

Fig. 5. (continued). 

Table 3 
Comparisons of deep learning vs. weighted non-linear fixed effect model with combinations of tree predictors. Results were based on cross validation of models in 
predicting AGB.  

ID Predictor/s Method Model Bias (%) RMSPE (%) MAPE (%) Source 

1 DBH Regression AGB = 0.128 × DBH2.409  − 12.2  42.1  30.6 Huy et al., 2016a 
Deep learning The best model  2.4  30.9  24.5 This study, 2021 

2 DBH, H Regression AGB = 263.998 × (DBH2H)0.936  − 8.6  36.6  27.4 Huy et al., 2016a 
Deep learning The best model  5.0  27.9  21.8 This study, 2021 

3 DBH, WD Regression AGB = 0.248 × DBH2.386 × WD  − 4.5  30.0  21.4 Huy et al., 2016a 
Deep learning The best model  3.5  24.2  18.8 This study, 2021 

4 DBH, H, WD Regression AGB = 0.806 × (DBH2HWD)0.920  − 2.1  26.7  19.6 Huy et al., 2016a 
Deep learning The best model  4.6  22.2  17.0 This study, 2021 

Note: Cross validation for deep learning (DL) with 10 realizations, each repeating the dataset of 968 samples was split randomly into 80% for training and 20% for 
validation; the best DL model was selected out of 10 validation results. DBH2H (m3)= (DBH (cm)/100)2 × H (m); DBH2HWD (kg) = DBH2H × WD (g cm− 3) × 1000. 

Table 4 
Comparisons of deep learning vs. weighted non-linear mixed effect model with random effects of the separate ecological variable. Results were based on cross 
validation of models in predicting AGB.  

ID Input variables Method Model Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

Source 

1 Observed AGB, DBH, H, 
Ecoregion 

Regression AGB = ai × (DBH2H)0.951 

with ai for ecoregions: CH: 304.167, NCC: 253.245, NE: 256.713, SCC: 272.080, 
SE: 236.586  

− 10.4  37.6  27.4 Huy et al., 
2016a 

Deep 
learning 

The best model  3.9  28.3  22.4 This study, 
2021 

2 Observed AGB, DBH, 
WD, Ecoregion 

Regression AGB = 0.229 × DBHbi × WD 
with bi for ecoregions: CH: 2.461, NCC: 2.402, NE: 2.400, SCC: 2.410, SE: 2.391  

− 4.8  29.9  21.0 Huy et al., 
2016a 

Deep 
learning 

The best model  2.8  24.2  17.7 This study, 
2021 

3 Observed AGB, DBH, H, 
WD Ecoregion 

Regression AGB = ai × (DBH2HWD)bi 

with ai and bi for ecoregions respectively: CH: 0.798 and 0.966, NCC: 0.681 and 
0.938, NE: 0.680 and 0.938, SCC: 0.685 and 0.940, SE: 0.647 and 0.931  

− 5.9  28.0  19.5 Huy et al., 
2016a 

Deep 
learning 

The best model  1.2  20.8  15.7 This study, 
2021 

Note: Ecoregion: CH: Central Highlands, NCC: North Central Coastal, NE: Northeast, SCC: South Central Coastal, SE: Southeast. Cross-validation for deep learning (DL) 
with 10 realizations, each repeating the dataset of 968 samples was split randomly into 80% for training and 20% for validation; the best DL model was selected out of 
10 validation results. DBH2H (m3)= (DBH (cm)/100)2 × H (m); DBH2HWD (kg) = DBH2H × WD (g cm− 3) × 1000. 
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AGB for tropical EBLFs, including at least 1 predictive variable and up to 
9 predictors such as DBH, H, Ecoregion, Altitude, P, T, Soil type, N, and 
WD. One of the 16 best created DL models can be chosen to use 
depending on the actual ability to collect the predictive variables and 
their variation in the application region. The 9 predictive variables DL 
model had the highest reliability for predicting tree AGB. 

The application of DL models to predict tree AGB requires input data 
collected at tree level in the sample plots. The measured and collected 
variables should be selected among nine predictive variables DBH, H, 

Ecoregion, Altitude, P, T, Soil type, N, and WD. Set up a measured data file 
formatted in *.csv to import the predictive variables data from all the 
measured trees following the collected, measured factors in sample 
plots. Each predictive variable is a column/field. Use a compiled Python 
code to read the saved best DL models together with the measured data 
file, thereby predicting the AGB for each tree in all sample plots. On that 
basis, calculate the total AGB of forest stand per hectare and the whole 
survey forest region. 

In addition, the results of this study show that DL models can be 

Table 5 
Comparisons of the two methods of deep learning vs. regression of weighted non-linear fixed-effect model combined with optimal multivariate predictors and 
ecological, environmental, variables. Cross-validation results of predicting AGB.  

ID Method Input variables Equation/Model FI Bias 
(%) 

RMSE 
(kg) 

RMSPE 
(%) 

MAPE 
(%) 

1 Regression Input 10 variables AGB = a×(DBH2 × H × WD)b × exp(c1× (Ecoregion − 2.5) 
+ c2× (Altitude − 547) + c3×(P − 1962) + c4*× (T − 22.8) 
+ c5× (Soil − 2.2) + c6*× (N − 939))  

0.938  − 2.7  217.8  26.4  19.3 

2 Input 8 optimal variables AGB = a×(DBH2 × H × WD)b × exp(c1× (Ecoregion − 2.5) 
+ c2× (Altitude − 547) + c3×(P − 1962) + c5× (Soil type −
2.2))  

0.937  − 3.0  203.4  26.8  19.2 

3 Deep 
learning 

Input 10 optimal variables: Observed 
AGB, DBH, H, Ecoregion, Altitude, P, T, 
Soil type, N and WD. 

The best model  0.957  4.6  170.2  19.1  15.0 

Note: Cross-validation for both deep learning (DL) and regression with 10 realizations, each repeating the dataset of 968 samples was split randomly into 80% for 
training and 20% for validation; statistics, errors in mean result were averaged over 10 times, and the best model of DL was selected out of 10 validation results. *: 
Parameter with Pvalue > 0.05. 

Multivariate regression: Input 8 optimal input variables: Observed AGB, DBH, H, WD, Ecoregion, Altitude, P, 
and Soil type. Weighted fixed effect model with a combination of multi predictors of tree predictors, ecological,  
environmental variables fit by Maximum Likelihood. 

Deep learning model: Input 10 optimal variables: Observed AGB, DBH, H, Ecoregion, Altitude, P, T, Soil 
type, N and WD.

Fig. 6. Plots compare performances of multivariate regression vs. deep learning models with input optimal variables. Fitted vs. Observed AGB (left) and Residuals vs. 
Fitted AGB based on the entire dataset. 

B. Huy et al.                                                                                                                                                                                                                                     



Forest Ecology and Management 508 (2022) 120031

12

applied more widely to simulate biological processes, biometrics and 
simulate complex ecological relationships of tropical forests for sus-
tainable management. This is expected to be possible because DL does 
not require normality of the response variable, can handle hetero-
scedasticity (Montano et al., 2017), for a large number and different 
kinds of complex variables and samples, and does not need to examine 
for appropriate equation forms like traditional regression, and thanks to 
DL techniques through DNNs (Fig. 2) that can detect functions of com-
plex biometric, environmental and ecological relationships (Ogana and 
Ercanli, 2021). 

5. Conclusion 

Trees AGB in tropical rain forests predicted by Deep Learning models 
had significantly higher reliability than the regression equations when 
both had the same input variables. In addition, DL models reduced 
RMSPE and MAPE by up to 7.7% and 6.1%, respectively, compared to 
traditional allometric equations. Sixteen best DL models were set up and 
stored with predictors from 1 to 9 variables. The DL model with 9 pre-
dictive variables DBH, H, Ecoregion, Altitude, P, T, Soil type, N, and WD 
was the best for predicting tree AGB in tropical EBLF. 

The best DL models created in this study should be applied for 
measured tree data in accordance with factors of the forest stand, 
ecology, and environment variables in sampled plots to predict more 
accurately the tree AGB and total AGB, carbon on a large scale. This is 
because DL models involved many predictive variables such as forest 
stand, environmental, ecological factors. Therefore, when applied over a 
large area with variation in the value of these factors, it will provide 
higher predictive reliability of tree AGB than the allometric equations, 
which only have predictive variables of tree predictors as tradition. 
Thus, the DL models are recommended to apply in the MRV system of 

the REDD+program at a large regional or national, or territorial scale. 
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