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A B S T R A C T   

The development and evaluation of new methods for the measurement, monitoring, and assessment of forest 
carbon biomass is necessary to quantify the ecosystem services provided by forests. To that end, multi-output 
deep learning (MODL) models were developed, cross-validated as alternative to the conventional weighted 
nonlinear seemingly unrelated regression (WNSUR) method for simultaneous prediction of tree aboveground 
biomass (AGB), tree belowground biomass (BGB), and total tree biomass (TB = AGB + BGB), while ensuring 
additivity, in two main tropical forest types – Dipterocarp Forest (DF) and Evergreen Broadleaf Forest (EBLF). A 
destructive sample of 175 trees was collected from 27 purposively selected plots in the Central Highlands 
ecoregion of Vietnam. The potential predictors of AGB, BGB and TB included four tree-level variables (diameter 
at breast height, DBH; tree height, H; wood density, WD; and crown area, CA), three stand-level variables (Forest 
type; basal area, BA; and stand density, N), and five environmental variables (mean annual rainfall, P; mean 
annual temperature, T; Soil type; Altitude; and Slope). The model utilizing DBH, CA, H, WD, BA, Altitude, P, and 
Forest type as predictors performed the best among the MODL models developed in this study. Compared to 
WNSUR models that used the same set of predictors and the dataset from the same forest types of DF or EBLF, the 
MODL models reduced the mean absolute percent error of tree AGB, BGB, and TB by up to 24.7 %, 96.5 %, and 
9.4 %, respectively. The results suggest that the MODL algorithm can be applied on a diverse spatial scale, 
covering gradients of forest stand characteristics, climate conditions, soil properties, and topography, as it can 
incorporate complex numerical and categorical variables into the models without requiring a priori functions.   

1. Introduction 

Forest ecosystems play a crucial role in the global carbon cycle, 
encompassing five primary carbon pools: aboveground plant biomass, 
below-ground plant biomass, litter, deadwood, and soil organic carbon 
(IPCC, 2006), which both sequester and release carbon simultaneously 
(Newell and Vos, 2012). Consequently, forest carbon optimization and 
management strategies are frequently incorporated into climate miti-
gation policy proposals (Hoover and Riddle, 2020). Among these pools, 
tree aboveground biomass (AGB) and tree below-ground biomass (BGB) 

are the most significant, accounting for approximately 31 % of the total 
forest carbon sequestration (Hoover and Riddle, 2020). For developing 
countries to participate in the Reducing Emissions from Deforestation 
and Forest Degradation (REDD + ) program or to receive Carbon Pay-
ments for Forest Environmental Services (C-PFES), it is also necessary to 
provide a transparent and accurate prediction of changes in AGB and 
BGB over time (Pelletier et al., 2012). Therefore, the development and 
evaluation of new approaches, such as multi-output deep learning 
(MODL) models, which have the potential to enhance the reliability of 
simultaneous predictions of tree AGB, BGB and total (TB = AGB + BGB), 
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ensuring additivity, compared to conventional allometric modeling is 
important. 

Although BGB constitutes a significant portion of forest biomass 
(Magalhaes, 2015; Brahma et al., 2021), most studies related to forest 
biomass and carbon have focused on tree AGB (Kralicek et al., 2017; 
Güner et al., 2022) due to the high cost and time required to measure 
BGB of large trees (Brahma et al., 2021). Because BGB is linked to AGB 
dynamics (Walker et al., 2016; Brahma et al., 2021), the root-to-shoot 
ratio (RSR) has been commonly used to convert AGB to BGB (FAO, 
2008; Walker et al., 2016). Direct equations for BGB have also been 
developed for some forest types. Kenzo et al. (2009) focused on tropical 
secondary forests in Malaysia, specifically developing a model for tree 
BGB estimation. Kachamba et al. (2016) developed separate models for 
tree AGB and BGB in the Miombo woodlands of Malawi. Kralicek et al. 
(2017) addressed the simultaneous estimation of tree AGB and BGB in 
tropical Dipterocarp Forest (DF) and Evergreen Broadleaf Forest (EBLF) 
in Vietnam. Furthermore, species-specific BGB models have been pro-
posed by Razakamanarivo et al. (2012) for Eucalyptus in Madagascar, 
Marziliano et al. (2015) for Phillyrea latifolia L. in Mediterranean forest 
landscapes, and Magalhaes (2015) for Androstachys johnsonii Prain in 
Mozambique. Koala et al. (2017) demonstrated that species-specific BGB 
models outperformed generic allometric equations. 

One of the fundamental considerations in estimating tree biomass is 
to account for biological relationships and ensure the additivity of 
component biomass (Affleck and Dieguez-Aranda, 2016; Huy et al., 
2019). The seemingly unrelated regression (SUR) method (Parresol, 
2001) is commonly employed to meet this requirement. The weighted 
nonlinear SUR (WNSUR) approach is utilized when heteroscedasticity 
needs to be addressed. These methods have been widely used to estab-
lish a modeling system to simultaneously predict component biomass 
while ensuring additivity (Kralicek et al., 2017; Huy et al., 2019; Brahma 
et al., 2021; Xu and Zhang, 2022). Furthermore, studies have shown that 
using additive equations for biomass estimation yields more reliable 
results than the separately fitted equations for total tree biomass and its 
components (Huy et al., 2019). 

The conventional regression method, in general, and the WNSUR 
approach, often require selecting appropriate equation forms and 
assuming specific statistical properties such as normal distribution and 
homogeneous variance of errors. Consequently, limitations arise in 
dealing with multicollinearity, parameter estimation, model selection, 
and determining variance structure, leading to biased estimates (Huy 
et al., 2022; Xu and Zhang, 2022). Additionally, errors obtained from 
simultaneous AGB, BGB, and total TB prediction using the WNSUR 
approach are still high. For example, mean absolute percent errors 
(MAPE) of WNSUR modeling systems that simultaneously predict tree 
AGB, BGB and TB in the DF were 29 %, 50 %, and 23 %, whereas in the 
EBLF were 37 %, 122 % and 20 %, respectively (Kralicek et al., 2017). 
Therefore, several machine learning (ML) methods have been proposed 
as alternatives to the conventional regression models in the recent years 
(Xu et al., 2022). 

ML encompasses algorithms that enable computers to learn from 
data without direct programming. Deep learning (DL), a subset of ML, 
utilizes deep neural networks (DNNs) and effectively models intricate 
patterns. The deep architecture of DNNs facilitates exploration of com-
plex structures within datasets. DL has consistently outperformed 
traditional ML techniques across domains, learning intricate patterns 
directly from data without predefined assumptions (LeCun et al., 2015; 
Zhou and Feng, 2019). DL models utilize DNNs composed of multiple 
hidden layers that progressively extract representations (Chollet, 2018; 
Huy et al., 2022). These models aim to establish a functional relation-
ship between responses and covariates based on given inputs, enabling 
them to address real-time problem-solving tasks (Huy et al., 2022). 

DL methods have demonstrated considerable potential in uncovering 
complex relationships within forest ecosystems (Christin et al., 2019). 
These methods have proven effective in analyzing various components 
such as plant density, plant biomass, and organic carbon storage (Wang, 

2023), positioning DL approaches as viable alternatives to conventional 
regression methods in biometric research, particularly in forest biomass 
prediction. Despite these advantages of DL models tailored for biometric 
research in tropical forests over conventional regression approaches 
(Huy et al., 2022) have not received adequate attention, particularly 
within the realms of forest biomass. Literature in this area remains 
sparse, with several DL models developed for predicting singular outputs 
such as tree height (H) (Ogana and Ercanli, 2021), crown width (Qin 
et al., 2023), and tree AGB (Huy et al., 2022). Therefore, the develop-
ment of MODL models, capable of predicting tree AGB, BGB and total 
tree TB simultaneously, while ensuring additivity, will support the 
current need of quantifying carbon in different forest carbon pools. This 
study will contribute to the growing body of literature in the application 
of new algorithms in forestry science and document the potential of 
MODL in improving the reliability of AGB and BGB simultaneous esti-
mates in tropical forests. 

We hypothesize that MODL models will produce superior predictions 
compared to conventional simultaneous modeling systems using 
WNSUR, given that both approaches can simultaneously predict tree 
AGB, BGB, and TB. The objectives of this study were to 1) develop a 
MODL model system to simultaneously predict tree AGB, BGB, and TB, 
ensuring additivity in the tropical EBLF and DF, and 2) cross-validate the 
errors of MODL compared with WNSUR using the same dataset and 
predictors in the same forest type. 

2. Materials and methods 

2.1. Study sites 

The study was conducted in the Central Highlands ecoregion, which 
has the highest tropical forest cover of the eight ecoregions in Vietnam 
and focused on Vietnam’s main tropical forest types, namely DF and 
EBLF (Fig. 1). Both types of forests exhibit intricate structural charac-
teristics, showcasing a diverse array of age groups and species mixture. 
Dipterocarpaceae stands out as the predominant plant family in the DF 
but the EBLF lacks dominance by any singular plant family, yet species 
from Fagaceae, Myrtaceae, and Lauraceae families are prevalent (Kra-
licek et al., 2017). Table 1 summarizes the ecological factors and vari-
ables of the forest stand in the study area. 

2.2. Data 

The dataset used in this study was obtained from Kralicek et al. 
(2017). Twenty-seven sample plots were located in two forest types: DF 
(13 plots; 50 × 50 m) and EBLF (14 plots; 20 × 100 m). In each plot, 
species names and diameter at breast height (DBH, cm) was recorded for 
all trees larger than 5 cm in DBH and a set of trees was chosen for 
destructive sampling, prioritizing the dominant species in each forest 
type and reflected the diameter distribution observed in the stands. In 
total, 175 trees were destructively sampled, encompassing 48 species, 
40 genera, and 28 families. Among these, 105 sampled trees belonged to 
DF, while 70 sampled trees were from the EBLF. 

For tree AGB data, the selected trees were cut down. Prior to cutting 
them down, we determined the species name, measured DBH, and 
measured the crown diameter (CD) by averaging two measurements 
taken in the cardinal directions. Tree H was measured after the trees had 
been felled. The fresh AGB of the destructively sampled trees was 
divided into its components: the stem with bark, branches, and leaves 
(Huy et al., 2016a; Huy et al., 2016b). For tree BGB data, we used the 
root excavation method, a commonly employed standard technique as 
demonstrated by Marziliano et al. (2015), Röhling et al. (2019), and 
Medrano-Meraz et al. (2021). However, it’s worth noting that the 
implementation of this method was both time-consuming and expen-
sive. Achieving precise measurements of fresh root biomass for trees in 
tropical uneven-aged and mixed-species forests presented significant 
hurdles. Consequently, we invested substantial efforts and resources into 
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gathering root biomass data for the 175 sample trees across two tropical 
forest types, DF and EBLF, ensuring the reliability required for con-
structing estimation models for BGB. The root systems of all sample trees 
were fully excavated, and measurements were recorded for roots with a 
diameter exceeding 2 mm (IPCC, 2006). Fine roots with a diameter of 
less than 2 mm were excluded due to their contribution to other biomass 
pools such as soil organic matter or litter (Rohling et al., 2019; IPCC, 
2006). Industrial vehicles were indispensable for extracting the root 
systems of large trees, whereas the remaining roots, including those of 
smaller trees, were dug up manually. Subsequently, excavation along 
each individual coarse root was carried out until the entire root structure 
was exposed. 

The fresh weight of tree components (leaves, branches, stem with 
bark, and roots) was also recorded in the field using an electronic scale 
with a precision of 0.05 kg. To calculate the fresh-to-dry mass ratio of 
each component, we carefully packaged samples and transported them 
to the laboratory for analysis. For each sampled tree, roots were cate-
gorized into three size groups (large, medium, and small) based on the 
tree’s diameter. Approximately 300 g of root samples were collected 
from these three categories. Wood samples (500 g), bark samples (300 
g), and wood disks for wood density (WD) calculations were collected at 
five replications along the stem of each tree. Additionally, three branch 

samples (500 g each) were collected for each tree: one from the largest 
branch, one from a medium-sized branch, and one from the smallest 
branch. Furthermore, two foliage samples (300 g each) of new and old 
leaves were collected for each tree (Kralicek et al., 2017). All component 
samples were weighed for fresh biomass on site using an electronic scale 
with a precision of 0.01 g. 

The fresh volume of wood samples was determined in the laboratory 
using the water displacement method. Subsequently, all samples were 
chipped into small pieces and dried at 105 ◦C until a constant weight was 
attained. The total above- and below-ground dry weights of a tree (AGB, 
BGB, respectively) were calculated by multiplying the fresh weight of 
each component by its respective fresh-to-dry ratio and summing across 
the relevant components. The WD of a sample was calculated as the ratio 
of the dry weight to the fresh volume of each sample, while the WD of a 
sample tree was computed as the arithmetic average of the WD values of 
all samples from that particular tree (Kralicek et al., 2017). 

The variables included in the dataset were as follows: 1) response 
variables: tree AGB, representing the total dry biomass of stem, bark, 
branches, and leaves; tree BGB, representing the dry biomass of the tree 
root system; the total dry biomass of each sampled tree (TB) was 
calculated as the sum of AGB and BGB (TB = AGB + BGB); 2) tree level 
predictors: DBH, tree crown area (CA) calculated based on averaged CD 

Fig. 1. Locations of sample plots for the Dipterocarp Forest (DF) and the Evergreen Broadleaf Forest (EBLF) in the Central Highlands ecoregion of Vietnam.  
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using the formula CA = π/4 × CD2, tree H, and WD; 3) stand attributes 
and environmental factors: basal area (BA), stand density (N), and Forest 
type; mean annual rainfall (P) and mean annual temperature (T) (Fick 
and Hijmans, 2017); Soil types (Fischer et al., 2008), along with Altitude, 
and Slope. Table 1 provides a summary of the statistics of these variables. 

2.3. Variable selection 

Various methods are available to select variables for analyzing re-
lationships, including Principal Component Analysis (PCA), Factor 
Analysis for Mixed Data (FAMD), and model selection by exhaustive 
search, forward or backward stepwise, or sequential replacement. The 
PCA can accommodate continuous numerical variables but is not suited 
for datasets containing mixed numerical and categorical variables. 
Regression model selection, on the other hand, might not provide a 
straightforward interpretation of factors. FAMD is specifically tailored to 
handle datasets encompassing both numerical and categorical variables. 
Its application aids in reducing predictive variables while enhancing the 
interpretability of multiple factors. In the FAMD approach, variables are 
normalized to ensure equal influence from numerical and categorical 
variables (Huy et al., 2022; R Core Team, 2023). Given that our dataset 
incorporates both numerical and categorical variables, we employed 
FAMD, following the approach outlined by Huy et al. (2022), to identify 
the factors that contribute the most significantly to the variations in tree 
AGB, BGB, and TB. The FAMD was implemented using the FAMD 
package in R version 4.0.5 (R Core Team, 2023). 

2.4. Multi-output deep learning (MODL) 

MODL models map each input to multiple outputs simultaneously. 
By employing DL techniques to predict multiple response outputs based 
on input variables, which include both observed response variables and 
predictive observed covariates, it is possible to address significantly 
more complex decision-making problems (Xu et al., 2020). Suppose X =
Rz is a z-dimensional input space and Y = Rm is an m-dimensional output 
space. MODL aims to learn a function F: X  × Y → R based on the training 
dataset D of input response and predictive variables. Where D = {(xi, yi) 

|1 ≤ i ≤ n} with xi ∈ X is a z-dimensional input vector, and yi ∈ Y is an m- 
dimensional output vector associated with xi. The aim is to predict the 
output response variables in one instance simultaneously. Multiple 
outputs are associated with each instance, represented by a real-valued 
vector, where the values represent how closely the instance corresponds 
to a response. Therefore, the learned multi-objective function that pre-
dicts a real-valued vector is the multi-output f(x) ∈ Y (Xu et al., 2020). 

The DL models typically comprise an input layer with response 
variables and predictive covariates, hidden layers with neurons, and an 
output layer for predicting the response variable. Through iterative 
process across multiple hidden layers, features are progressively 
extracted and passed to subsequent layers, enabling the discovery of 
complex relational functions among input variables and covariates 
(LeCun et al., 2015; Ogana and Ercanli, 2021; Huy et al., 2022). 

The transformation within the DNN is carried out by a layer that is 
parameterized by its weights. This deep learning process involves 
determining the appropriate values for the weights across all layers of 
the DNN. In this study, to enable simultaneous predictions of multi- 
response variables, the DNN learning process for weight determination 
(Huy et al., 2022) was modified as follows: 

ym product 1 =
∑z

i=1
Xi × wi + ε1 (1)  

Ym product =
[
ym product 1, ym product 2, ..., ym product ne

]
(2)  

ym output 1 = f

(
∑z

i=1
Xi × wi + ε1

)

(3)  

Ym output =
[
ym output 1, ym output 2, .., ym output ne

]
(4)  

where ym product ne is the m multi-product of the input vector X  = [X1, X2, 
… Xi.., Xz], z is the number of input variables, and wi is the weight on 
interconnection along with Xi and εi is the bias value, ne is the number of 
neurons of the network, Ym product is the m multi-product vector, f is the 
activation function used at the neuron, and ym output ne is the m multi- 
output of the neuron and Ym output is the m multi-output vector. 

Like other single-output DL models (Huy et al., 2022), MODL models 
in this study also utilize DNNs. However, the DNNs, akin to the SUR 
method, are tailored to produce an output layer facilitating simulta-
neous prediction of response variables while accounting for the corre-
lation among the errors of component models (Seely et al., 2023). This 
design ensures additivity within the model systems, enabling simulta-
neous prediction of multiple outputs and contributing to error reduction 
within the model framework. 

A specific loss function was designed to regulate the output of DNN 
for MODL models, mean absolute percent error was used as the loss 
function (MAPEloss, %) to control the percentage deviation in the 
simultaneous prediction of tree AGB, BGB, and TB within MODL models. 
The MAPEloss involves 53 validation samples accounting for 30 % of the 
randomly split dataset, designed to ensure harmonization of the errors 
between the simultaneously predicted AGB and BGB components, 
thereby achieving the smallest error possible for the total TB prediction. 
The MAPEloss devised in this study also guarantees that the total pre-
diction aligns closely with the actual observed values. It further captures 
the error reduction for each component while maintaining an overall 
balance. 

MAPEAB_loss serves as the loss function for making simultaneous 
predictions of AGB, and BGB is defined as: 

MAPEAB loss(%)
=100

m
∑m

i=1

{⃒
⃒
⃒
⃒
yai − ŷai

yai

⃒
⃒
⃒
⃒ +

⃒
⃒
⃒
⃒
ybi − ŷbi

ybi

⃒
⃒
⃒
⃒

}

(5) 

Similarly, MAPET_loss acts as an additional constraint, ensuring that 
the predicted total tree biomass TB matches the combined sum of 

Table 1 
Summary statistics of variables.  

ID Variables Min Mean Max Std. 

Response variables: 
1 AGB (kg tree-1) 1.5 54.7 993.5 113.7 
2 BGB (kg tree-1) 0.5 11.2 172.6 19.4 
3 TB (kg tree-1) 2.6 66.0 1166.1 131.7  

Predictive variables:  
Tree variables:     

4 DBH (cm) 3.4 10.9 40.5 5.9 
5 CA (m2 tree-1) 0.38 8.13 54.11 8.09 
6 H (m) 2.8 8.7 19.0 3.3 
7 WD (g cm− 3) 0.354 0.611 0.912 0.107  

Stand variables:     
8 Forest type (categorical variable): Dipterocarp Forest (DF) and Evergreen 

Broadleaf Forest (EBLF) 
9 BA (m2 ha− 1) 7.00 23.65 49.00 13.48 
10 N (trees ha− 1) 256 879 3330 572  

Ecological variables:     
11 P (mm year− 1 averaged) 1600 1846 2500 320 
12 T (0C averaged) 22.2 24.9 25.5 1.0 
13 Soil type (categorical variable): Igneous rocks and Sedimentary rocks 
14 Altitude (m) 197 448 1068 255 
15 Slope (degree) 0.0 6.9 36.0 10.7 

Note: AGB: Aboveground biomass, BGB: Below-ground biomass, TB: Total 
biomass including tree above- and belowground biomass, DBH: Diameter at 
breast height, CA: Tree crown area, H: Tree height, WD: Wood density, BA: Stand 
basal area, N: Stand density, P: Mean annual precipitation, T: Mean annual 
temperature. 
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observed AGB and BGB components and is defined as: 

MAPET loss(%)
=100

m
∑m

i=1

⃒
⃒
⃒
⃒
(yai + ybi)− (ŷai + ŷbi)

yai + ybi

⃒
⃒
⃒
⃒ =

100
m
∑m

i=1

⃒
⃒
⃒
⃒
yti − ŷti

yti

⃒
⃒
⃒
⃒

(6) 

The overall loss function is denoted as MAPEloss: 

MAPEloss(%) = MAPEAB loss +MAPET loss  

=
100
m
∑m

i=1

{⃒
⃒
⃒
⃒
yai − ŷai

yai

⃒
⃒
⃒
⃒ +

⃒
⃒
⃒
⃒
ybi − ŷbi

ybi

⃒
⃒
⃒
⃒ +

⃒
⃒
⃒
⃒
yti − ŷti

yti

⃒
⃒
⃒
⃒

}

(7)  

where yai, ybi, yti and ŷai, ŷbi, ŷti were observed, and simultaneously 
predicted tree AGB, BGB, TB for the ith sampled tree, respectively; m was 
the total number of observed/predicted values from the validation 
dataset. 

The DNN architecture, developed by Huy et al. (2022), was upgraded 
in this study to develop a DNN capable of simultaneously predicting tree 
AGB, BGB, and TB, while ensuring additivity. The DNN was trained 
using input data layers comprising the observed tree AGB, BGB, and TB, 
and various combinations of tree-level variables, forest stand charac-
teristics, ecological factors, and environmental factors were identified 
using the FAMD method. The one-hot encoding technique in Tensor-
Flow’s tf.one_hot() function (TensorFlow, 2023) was utilized to encode 
categorical variables as inputs for the DNN learning process. All numeric 
input covariates were scaled to ensure equalization of their effects in the 
DNN learning process. This was achieved by dividing each variable by its 
maximum value and scaling it to the range [0, 1] (Huy et al., 2022). The 
DNN processed the information through hidden layers with hundreds of 
neurons and generated a multi-output layer that simultaneously pre-
dicted tree AGB, BGB, and TB while ensuring additivity. Fig. 2 illustrates 
the DNN architecture designed for this study. 

Through the primary analysis, the optimal architecture of the DNN 
was selected, so that MODL models were able to simultaneously predict 

tree AGB, BGB, and TB while ensuring additivity, such as the numbers of 
hidden layers, the numbers of neurons, the hyperparameters of the 
epoch, the batch size and the stop function with patience (Table 2). The 
optimal DNN architecture consisted of multi-input variables, three 
hidden layers including 128 neurons in each layer, and a multi-output 
layer (Fig. 2). The number of epochs, a hyperparameter in DNN, spec-
ifies the number of times the DNN iterates through the entire training 
dataset (Huy et al., 2022). This study set the number of epochs to 3000, 
indicating that the DNN was trained by going through the entire dataset 
3000 times. On the other hand, the batch size, another hyperparameter, 
determines the number of samples processed before updating the in-
ternal model parameters (Huy et al., 2022). In this specific scenario, a 
batch of 32 was chosen, meaning that the DNN processed 32 samples at a 
time before updating its parameters. In this study, with 122 training 
samples accounting for 70 % of the randomly split dataset, each epoch 
consisted of 4 batches (calculated as 122 divided by the batch size of 32). 
The DNN learning process underwent a maximum of 12,000 batches 
throughout the training dataset, calculated as four batches per epoch 

Fig. 2. Deep Neural Network (DNN) architecture for Multi-Output Deep Learning (MODL) to simultaneously predict tree above- and belowground biomass and total 
(AGB, BGB, and TB, respectively). 

Table 2 
Examination of architecture and hyperparameters of the Deep Neural Network 
(DNN) for Multi-Output Deep Learning (MODL). The selection of the architec-
ture and hyperparameters of the DNN was based on the errors obtained through 
cross-validation.  

ID Architecture 
/Hyperparameter 

Min Max Step Selected 

1 Number of hidden layers 2 5 1 3 
2 Number of neurones in each 

hidden layer 
32 =
25 

512 =
29 

2n with n =
5, 6, 7, 8, 9 

128 =
27 

3 Epoch numbers 500 5000 500 3000 
4 Batch (sample size) 32 =

25 
64 =
26 

2n with n =
5, 6 

32 = 25 

5 Patience 500 1000 500 1000  
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multiplied by 3000 epochs. 
The DNNs employed the Adam optimization algorithm (Keras, 2022) 

for MODL models. For the hidden layers, the widely used Rectified 
Linear Unit (ReLU) activation function (Nair and Hinton, 2010; Alzu-
baidi et al., 2021) was utilized, as it plays a crucial role in capturing 
complex non-linear relationships between tree biomass responses and 
various predictive covariates. We applied linear activation function 
(Keras, 2022) for the output layer of the DNN. This choice of activation 
function facilitated the effective selection of the best fit between the 
actual and predicted output values. We implement an early stopping 
function to prevent overfitting with a patience value 1000 (Huy et al., 
2022). This function halted the training process when the validation loss 
did not improve further, ensuring that the model did not become overly 
specialized to the training data. Furthermore, we incorporated a dropout 
layer of 0.5 into the DNN architecture. This dropout layer randomly 
deactivates 50 % of the neurons during training as a regularization 
technique to mitigate overfitting (Huy et al., 2022). 

In this study, the application programming interfaces (APIs), Keras 
(Keras, 2022) and TensorFlow libraries (Chollet, 2018; Huy et al., 2022; 
TensorFlow, 2023) were used for MODL. MODL modeling systems were 
developed and cross-validated using the open-source Python program-
ming language (Python, 2022) through custom-written codes. 

2.5. Cross-validation for multi-output deep learning 

A robust cross-validation process was implemented to rigorously 
evaluate and select the most optimal MODL models capable of simul-
taneously predicting tree AGB, BGB, and TB while ensuring additivity. 
The dataset was randomly divided ten times into two subsets: 70 % for 
training and 30 % for validation, ensuring an unbiased evaluation. The 
Fit Index (FI) was employed as a goodness-of-fit statistic to assess the 
models’ performance, with a higher FI value approaching 1, signifying 
the most accurate fit to the data. Furthermore, an array of comprehen-
sive error metrics, including bias, root mean square error (RMSE), root 
mean square percent error (RMSPE), and mean absolute percent error 
(MAPE), were calculated to evaluate the models’ overall performance. 
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where k represents the number of realizations, which in this case was 10; 
m denotes the number of sampled trees in the validation dataset; and yi, 
ŷi and y represent the observed, predicted, and averaged values of tree 
AGB, BGB and TB for the ith validated tree in the kth realization. 

Graphical analysis was employed to assess the model performance, 
specifically examining the trend of fitted values versus observed values 
and the residuals versus fitted values for each modeling system. These 
plots provided valuable insights into the accuracy and appropriateness 
of the models. Once the best MODL models were validated and identified 
based on the function loss, they were saved within the Python code for 
future use. Subsequently, the Python code will utilize these saved 
models to make simultaneous predictions of tree AGB, BGB, and TB. 

3. Results 

3.1. Input variables for deep neural network 

The FAMD result shown in Fig. 3 indicates the extent to which a 
variable contributes to the overall variability observed in the dataset. 
Variables with higher contributions are considered more influential in 
driving the observed patterns, while those with lower contributions 
have less impact. Among the variables under consideration, TB, AGB, 
BGB, DBH, CA, and H made the highest contributions – exceeding the 
mean contribution level – to the overall variability observed in the 
dataset, as illustrated in Fig. 3. In contrast, variables such as Soil type, T, 
Slope, and N exhibited the lowest contributions and were consequently 
excluded from further analysis. The remaining 11 factors, comprising 
three response variables (TB, AGB, and BGB) and eight predictive 
covariates (DBH, CA, H, WD, BA, Altitude, P, and Forest type), were uti-
lized in the deep neural network. 

3.2. Multi-output deep learning models for simultaneously predicting 
AGB, BGB and TB 

Nine MODL models were developed in two forest types, DF and EBLF 
(Table 3), using different combinations of predictive covariates selected 
through FAMD. To evaluate the performance of these models, plots of 
fitted versus observed values and residuals versus fitted values were 
generated and presented in Fig. 4. These plots provide information on 
the accuracy and precision of the model’s predictions. Furthermore, 
Table 3 presents the cross-validation statistics for each model. These 
statistics serve as metrics to assess the performance and effectiveness of 
the developed MODL models in predicting biomass variables. 

In Table 3, MODL models had combinations of 2 predictive variables 
(DBH, Forest type) to up to 8 predictive variables (DBH, CA, H, WD, BA, 
Altitude, P, Forest type). Variable Forest type was included in all models to 
distinguish the tree AGB, BGB and TB predictions for each forest type 
such as DF and EBLF. As expected, the MODL model had higher reli-
ability and lower errors as predictive variables increased from two to 
eight (Table 3 and Fig. 4). In particular, the model with 5 predictors −
DBH, CA, H, WD, and Forest type − exhibited cross-validation statistical 
metrics comparable to the optimal model with 8 predictors (Table 3). 
Additionally, the MODL model with 4 predictors − DBH, H, WD, and 
Forest type − demonstrated higher levels of efficiency in the plots 
compared to other models (Fig. 4). However, these models have limi-
tations in their applicability due to their exclusive focus on predictors at 
the tree level, while lacking consideration of stand-level and ecological 
environmental variables. As a result, they were not selected as the 
optimal model. The optimal MODL model, comprising 8 predictors −
DBH, CA, H, WD, BA, Altitude, P, and Forest type − yielded the best 
simultaneous predictions of the tree AGB, BGB and TB, while ensuring 
additivity in both forest types of DF and EBLF; where FI = 0.875, 0.791, 
0.922, and MAPE = 16.42 %, 29.01 %, 14.90 % for the simultaneously 
predicted tree AGB, BGB, TB, respectively. 

The study also developed eight MODL models to simultaneously 
predict tree AGB, BGB, and TB for the DF using 1 predictor (DBH) to a 
maximum of 6 predictor variables (DBH, CA, H, WD, BA, Altitude) 
(Table 4). The P factor was excluded because the distribution of the DF 
falls within the same range as the P values. Based on cross-validation 
statistics and errors (Table 4), the MODL model with four optimal pre-
dictor variables DBH, CA, H, and WD provided the best simultaneous 
predictions of tree AGB, BGB, and TB while ensuring additivity in DF; 
where FI = 0.981, 0.719, 0.965, and MAPE = 13.22 %, 27.72 %, 10.95 % 
for simultaneously predicted tree AGB, BGB, TB, respectively. 

Nine MODL models were also developed to simultaneously predict 
tree AGB, BGB, and TB, ensuring additivity for the EBLF (Table 5). These 
models utilized a range of predictors, varying from one predictor (DBH) 
up to a maximum of seven predictor variables (DBH, CA, H, WD, BA, 
Altitude, and P), as outlined in Table 5. After cross-validation, the MODL 
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model incorporating three optimal predictor variables − DBH, H, and 
WD − demonstrated the most accurate simultaneous predictions for tree 
AGB, BGB, and TB ensuring additivity in the EBLF. Notably, the per-
formance indices were recorded as follows: FI = 0.884, 0.684, and 
0.947, while the corresponding MAPE values were 12.44 %, 25.60 %, 
and 10.56 % for the simultaneous predictions of tree AGB, BGB, and TB, 
respectively. 

Through the comparison between MODL models for simultaneous 
predictions of tree AGB, BGB, and TB, including both DF and EBLF forest 
types (Table 3) and MODL models for each forest type such as DF and 
EBLF (Table 4 and Table 5), the results showed significant difference 
through cross-validation. The optimal MODL models developed specif-
ically for each forest type exhibited higher accuracy than those designed 
collectively for both types. 

This study also developed single-output deep learning models to 
separately predict tree AGB, BGB, and TB (Table 6) in two forest types, 
DF and EBLF and compared to those of the MODL models for simulta-
neous estimations of tree AGB, BGB, and TB while ensuring additivity 
(Table 3) with the same combinations of predictive variables. The cross- 
validation statistical metrics of the MODL models, designed for simul-
taneous estimations, were approximately comparable to those of the 
single-output DL models used for separate estimations of tree AGB, BGB, 
and TB (Table 3 vs. Table 6). Specifically, the MAPE for predicting TB 
while ensuring additivity in both forest types, DF and EBLF, using the 
optimal MODL was significantly lower at 14.90 % (Table 3) compared to 
the single-output DL model with the same set of 8 predictive covariates, 
which had a MAPE of 17.59 % (Table 6). 

As a result, simultaneous prediction with MODL models harmonized 
the error between tree AGB and tree BGB estimates, thereby providing a 
better TB estimate compared to the separate TB estimation of a single- 
output DL model (Table 3 vs. Table 6). In addition, the MODL models 
for simultaneous estimations of tree AGB, BGB, and TB also ensure the 
additivity of the tree component biomass and the total as the SUR 
method does. 

4. Discussion 

4.1. Comparison of MODL and WNSUR 

The SUR method (Parresol, 2001; Sanquetta et al., 2015; Poudel and 
Temesgen, 2016) was initially employed because it ensures the addi-
tivity of biomass components to total tree biomass. Additionally, 
weighted nonlinear models were utilized to account for the 

heterogeneity of errors (Huy et al., 2016a,b, 2019). WNSUR was per-
formed using the SAS Proc Model procedure with the generalized least 
squares (GLS) method (SAS Institute Inc. 2014). The WNSUR modeling 
system employed a popular power-law function for each component 
equation (Brahma et al., 2021), with the following general form (Kra-
licek et al., 2017; Huy et al., 2019): 

AGBi = α1Xβ1
1i + ε1i (13)  

BGBi = α2Xβ2
2i + ε2i (14)  

TBi = α1Xβ1
1i + ε1i + α2Xβ2

2i + ε2i (15)  

where AGBi, BGBi, and TBi are the AGB, BGB, and TB, respectively, for 
the ith sample tree; α1,2 and β1,2 are parameters of the 1st, 2nd model; 
X1,2i is the predictor variable(s) including DBH, H, WD and CA or a 
combination of predictor variables associated with the ith tree for the 
1st, 2nd model; and e1,2i is the random error term associated with the ith 

tree for the 1st, 2nd model and are assumed to be normally distributed 
with mean zero and constant variance. 

Through implemented cross validation, we compared the errors and 
reliability of simultaneous predictions of tree AGB, BGB and TB in 
tropical forests by using MODL models against modeling systems 
applying WNSUR (Kralicek et al., 2017) with the same forest types of DF 
or EBLF, using the same sampled trees and for the same tree predictor 
covariates based on FI, Bias, RMSPE and MAPE of simultaneous pre-
dictions of tree AGB, BGB, TB. The models used four tree optimal pre-
dictors DBH, H, WD and CA in DF and three optimal predictors DBH, H 
and WD in EBLF. The results of the cross-validation comparisons are 
presented in Table 7. These comparisons are visually depicted in Fig. 5, 
showcasing the simultaneous fitting and observation of tree biomass 
components while comparing the two approaches. A significant 
outcome of this analysis is that the MODL approach improved reliability 
and accuracy compared to the WNSUR method for the simultaneous 
prediction of tree AGB, BGB, and the total biomass TB in tropical forests. 

The MODL models in this study provided significantly better reli-
ability than the WNSUR models of Kralicek et al. (2017) for simulta-
neous predictions of tree AGB, BGB, and TB in tropical forests (Table 7). 
For dipterocarp forests with the same predictive tree variables, the 
MODL models reduced the MAPE of simultaneous predictions of tree 
AGB, BGB, and TB by 15.7 %, 22.2 %, and 11.6 %, respectively, 
compared to the WNSUR modeling system (Table 7). For evergreen 
broadleaf forests, MODL models reduced the MAPE of simultaneous 
predictions of tree AGB, BGB, and TB by up to 24.7 %, 96.5 %, and 9.4 %, 

Fig. 3. Contributions of mixed numerical and categorical variables to the overall variability observed in the dataset in Factor Analysis for Mixed Data (FAMD). The 
dashed line represents the mean contribution level. 
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respectively, compared to the WNSUR modeling system (Table 7). These 
comparisons show a substantial improvement in reliability (especially 
for AGB and BGB predictions) when applying the MODL algorithm 
compared to the conventional method like WNSUR. These comparisons 
are further substantiated by Fig. 5. 

Although the well-known WNSUR method offers interpretability, it is 
not without limitations, much like other regression-based approaches. 
For instance, it requires adherence to assumptions such as normality and 
homoscedasticity and necessitates the identification of optimal 
nonlinear fitting functions for each component equation. Furthermore, 
finding appropriate initial parameter estimates in the nonlinear 
modelling system can be challenging. The DL models can operate 
without the need for specific statistical assumptions, which makes them 
advantageous when dealing with the complexities and uncertainties 
present in tropical forest ecosystems. 

4.2. Ecological and environmental variables in MODL models 

Regression functions often fail to completely capture the environ-
mental and ecological factors that impact the complex biological re-
lationships involved in forest biomass and carbon sequestration in 
tropical forests (Huy et al., 2022). Previous research has focused on 
integrating key predictors specific to individual trees within biomass 
equations for tropical forests (Brown, 1997; Chave et al., 2014). As a 
result, these regression-based approaches frequently neglect the inclu-
sion of other crucial factors that significantly impact the relationships 
between biomass and various environmental and ecological variables 
within tropical forests (Huy et al., 2022). 

The MODL approach used in this study incorporates a comprehensive 
set of variables, including forest stand variables, ecological and envi-
ronmental factors, and tree-level predictors. By considering a broader 
range of factors and variables, the MODL models capture the complex 
interactions and dependencies among these variables, resulting in more 
accurate and robust predictions for tree biomass in tropical forest eco-
systems. Conventional regression techniques have the disadvantage of 
defining the functional forms of the relationship between the tree 
biomass component and the total biomass with these factors, primarily 
how to code nominal categorical variables and determine the optimal 
function to map these coded variables to tree biomass. Meanwhile, 
MODL models can incorporate such variables without knowledge of the 
relational function form. In MODL models, the categorical variables can 
be encoded by various techniques such as ordinal, one-hot, dummy, 
effect, hash, binary, base N, and target encodings (Huy et al., 2022) for 
the input layer of the DNNs. As a result, MODL models greatly improve 
the reliability of simultaneous predictions of tree components and total 
biomass. 

In this study, the optimization of MODL for simultaneously predict-
ing tree AGB, BGB, and TB while ensuring additivity included 8 pre-
dictive variables: DBH, CA, H, WD, BA, Altitude, P, and Forest type. The 
functional forms of the tree component and total biomass, along with 
ecological environmental factors such as Altitude, P, and Forest type, are 
complicated. Therefore, until now, most models simultaneously esti-
mate tree components and total biomass with mainly tree predictors 
such as DBH, H, WD, and CA (Kralicek et al., 2017; Huy et al., 2019). 
Additionally, the sequestration of AGB, for example, is significantly 
influenced by variations in altitude gradients within Amazonian forests 
(Maza et al., 2022). Thanks to the inclusion of various input factors, the 
MODL models can be more widely applied to simulate complex bio-
logical, biometric, and ecological processes of tropical forests for sus-
tainable management. 

Table 3 
The best Multi-Output Deep Learning (MODL) models of different combinations 
of predictive variables for simultaneously predicting tree AGB, BGB, and TB 
while ensuring additivity in two forest types, DF and EBLF and cross-validation 
statistics.  

ID Combinations of 
predictive variables for 
simultaneously predicting 
tree AGB, BGB and TB 

FI RMSE 
(kg 
tree-1) 

Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

1 8 predictive variables: DBH, CA, H, WD, BA, Altitude, P, Forest type 
Predicting AGB:  0.875  16.6  − 0.98  21.47  16.42 
Predicting BGB:  0.791  5.9  2.34  38.90  29.01 
Predicting TB = AGB +
BGB:  

0.922  12.5  2.08  19.03  14.90  

2 7 predictive variables: DBH, CA, H, WD, BA, Altitude, Forest type 
Predicting AGB:  0.856  42.7  − 5.39  23.20  18.32 
Predicting BGB:  0.872  5.3  6.37  37.15  28.55 
Predicting TB = AGB +
BGB:  

0.881  30.4  − 0.19  19.76  15.50  

3 6 predictive variables: DBH, CA, H, WD, BA, Forest type 
Predicting AGB:  0.898  24.5  − 0.95  23.31  17.78 
Predicting BGB:  0.750  8.9  0.89  34.27  26.27 
Predicting TB = AGB +
BGB:  

0.906  18.4  2.09  20.83  15.99  

4 5 predictive variables: DBH, CA, H, WD, Forest type 
Predicting AGB:  0.920  13.8  − 2.52  21.81  16.92 
Predicting BGB:  0.878  4.0  1.63  41.40  28.17 
Predicting TB = AGB +
BGB:  

0.938  10.1  2.00  17.69  14.21  

5 4 predictive variables: DBH, CA, H, Forest type 
Predicting AGB:  0.820  72.4  10.04  24.30  20.25 
Predicting BGB:  0.858  10.2  7.11  37.34  30.37 
Predicting TB = AGB +
BGB:  

0.841  51.7  12.04  24.33  20.95  

6 4 predictive variables: DBH, H, WD, Forest type 
Predicting AGB:  0.994  9.2  0.19  24.61  16.50 
Predicting BGB:  0.893  5.2  − 4.10  43.32  31.08 
Predicting TB = AGB +
BGB:  

0.994  7.5  2.23  21.64  15.24  

7 3 predictive variables: DBH, CA, Forest type 
Predicting AGB:  0.801  31.4  − 4.14  33.14  23.99 
Predicting BGB:  0.703  6.0  11.28  33.84  26.96 
Predicting TB = AGB +
BGB:  

0.833  22.6  3.27  24.05  18.21  

8 3 predictive variables: DBH, H, Forest type 
Predicting AGB:  0.940  19.8  2.00  26.94  21.07 
Predicting BGB:  0.702  9.5  13.42  40.84  33.55 
Predicting TB = AGB +
BGB:  

0.929  15.5  5.97  27.02  21.17  

9 2 predictive variables: DBH, Forest type 
Predicting AGB:  0.735  65.7  − 0.14  32.07  24.06 
Predicting BGB:  0.882  5.7  10.71  30.31  24.15 
Predicting TB = AGB +
BGB:  

0.781  46.6  5.10  24.92  19.93 

Note: AGB (kg tree-1): Aboveground biomass, BGB (kg tree-1): Belowground 
biomass, TB (kg tree-1): Total tree biomass including tree above- and below-
ground biomass, DBH (cm): Diameter at breast height, CA (m2 tree-1): Tree 
crown area, H (m): Tree height, WD (g cm− 3): Wood density, BA (m2/ha): Stand 
basal area, Altitude (m), P (mm year− 1 averaged): Mean annual precipitation, 
Forest type: Dipterocarp Forest (DF) and Evergreen Broadleaf Forest (EBLF), Soil 
type: Igneous rocks and Sedimentary rocks. 
Cross-validation with 10 realizations, each repeating the dataset was split 
randomly into 70% for training and 30% for validation; and the best MODL 

models, chosen from the 10 validation results, had its statistics and error metrics 
averaged for that validation. Bold: The optimal MODL model. 
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4.3. Application of MODL models in tropical forests 

Based on resource availability and the principle of parsimony, 

selecting and utilizing one of the 9 best-created MODL models presented 
in Table 3 is possible. The selected MODL model can then be applied to 
gather the necessary predictive covariates and assess their variations 

Fig. 4. Plots of Multi-Output Deep Learning (MODL) models for simultaneously fitting tree AGB, BGB, TB (tree above- and belowground biomass and the total tree 
biomass, respectively) associated with different combinations of predictive covariates: Fitted vs. Observed tree AGB, BGB, TB (left); Residuals of tree AGB, BGB, TB 
vs. Fitted tree AGB, BGB, TB (right). DBH: Diameter at breast height, CA: Tree crown area, H: Tree height, WD: Wood density, BA: Stand basal area, Altitude, P: Mean 
annual precipitation, Forest type: Dipterocarp Forest (DF) and Evergreen Broadleaf Forest (EBLF), Soil type: Igneous rocks and Sedimentary rocks. 
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within the application region. The MODL model that incorporates eight 
predictive covariates DBH, CA, H, WD, BA, Altitude, P, and Forest type 
demonstrated the highest reliability for the simultaneous predictions of 
tree AGB, BGB and TB in both tropical forests DFs and EBLFs (Table 3). 
Following the identification of the eight optimal predictive MODL 
model, the MODL model featuring four predictive variables − DBH, H, 
WD, and Forest type (Table 3) − demonstrates a commendable goodness 
of fit for simultaneous prediction of AGB, BGB, and TB. This model 
warrants selection when applied within an ecological setting charac-
terized by relatively stable variables, provided it adheres to the parsi-
mony criteria. Additionally, when using MODL models for distinct forest 
types, utilizing the optimal MODL models (Table 4 and Table 5) tailored 
to the specific forest type yields superior results compared to using the 
MODL models across both forest types, as cross-validated in the cases of 
DFs and EBLFs (Table 4 and Table 5 vs. Table 3). 

The application of the selected MODL model requires input observed 
data and can be applied to either a forest block or a larger region. To 
implement the model, new data for the predictor variables need to be 
collected based on the requirements of the chosen model. This can be 
achieved by collecting data from several purposive sample plots if the 
model is applied to a forest block or by establishing a systematic sam-
pling design for a larger area. This study developed a Python script to 
load the saved best MODL model and apply it to the newly observed 
data. This script allows for simultaneous AGB, BGB, and TB predictions 
while ensuring additivity for each tree within the sample plot in both 
tropical forests, DFs, and EBLFs. From the results obtained, predicting 
and monitoring the total above- and below-ground biomass of forest 
trees for each forest block or a larger ecological region is possible. This 
capability allows for assessing changes in tree biomass over time and 
provides valuable information on the quantity and carbon storage 
within forest ecosystems. 

The MODL models developed in this study are utilized for simulta-
neous predictions of AGB, BGB, and TB while maintaining additivity for 
individual forest trees and aggregated plot-level totals. These models 
can be extended for forest biomass estimation at larger scales through 
integration with remote sensing (RS) technology. MODL or conventional 
tree biomass models assist in providing ground truth data for total AGB, 
BGB, and TB per plot (Zhang et al., 2021), combined with various RS 
imagery analysis techniques to establish relationships between forest 
biomass and image indices. This enables prediction of total AGB, BGB, 
and TB across wide areas for different forest statuses and types. How-
ever, RS imagery, with its variable resolutions, cannot directly capture 
AGB, BGB, and TB values in tropical forests (Zhang et al., 2021), which 
are obtained only through destructive sampling methods. Conventional 
tree biomass regression and MODL methods utilize these destructive 
sampling data to develop tree biomass models, incorporating predictors 
such as tree/stand-level variables and ecological/environmental factors. 

MODL models or biomass allometric equations then transfer predictors 
from tree/stand-levels and ecological/environmental factors to estimate 
forest stand biomass, supporting RS analysis in large-scale forest 
biomass prediction. High-resolution multispectral images obtained from 
Unmanned Aerial Vehicles (UAVs) and Light Detection and Ranging 
(LiDAR) technology can be used to develop prediction models, both 
parametric and non-parametric, for estimating annual crop plant 
biomass based on spectral indices (Liu et al., 2022, 2023, 2024; Lao 
et al., 2024). Nevertheless, in tropical rainforests, UAVs, LiDAR can only 
capture tree variables and stand attributes, such as tree H, tree CD, and 
stand N (Terryn et al., 2022). Thus, conventional tree biomass regression 
or MODL models, as recommended in this study, are necessary to 
translate tree/stand attributes obtained via UAVs into forest biomass 
estimates (Zhang et al., 2021). 

4.4. Novelty of the MODL models developed in this study 

While DL models outperform conventional regression methods in 
biometrics research within tropical forests, as demonstrated by studies 
(Ogana and Ercanli, 2021; Huy et al., 2022; Qin et al., 2023), existing DL 
models only focused on predicting individual factors like tree H, tree 
crown width, and tree AGB. This study introduced a novel approach for 
simultaneous prediction of AGB and BGB using MODL method. This 
study’s key innovations included designing an optimal architecture for 
DNN to tailor MODL models to tropical forest biomass data, which often 
contain diverse influencing factors. Additionally, for the first time, an 
algorithm was designed to address the specific loss function tailored for 
creating MODL models that predict AGB, BGB, and TB simultaneously, 
while ensuring additivity (TB = AGB + BGB). The constructed MODL 
models demonstrated superior reliability compared to conventional 
regression modeling systems, which also predict simultaneous compo-
nents of forest tree biomass and ensure additivity like WNSUR. A dis-
tinguishing feature in the construction of MODL, as opposed to 
conventional correlational models relying solely on tree-level predictors 
to estimate forest tree biomass, MODL has been designed to incorporate 
a diverse array of selected predictors influencing forest tree biomass, 
such as tree-level variables, stand-level factors, environmental, and 
ecological variables identified using the FAMD method, wherein com-
plex numerical and categorical variables are incorporated to enhance 
reliability and applicability scope. The results indicated that among the 
MODL models created, the model utilizing the optimal eight predictors: 
DBH, CA, H, WD, BA, Altitude, P, and Forest type performed the best. This 
optimal MODL model can be applied across various scales, from small 
forest plots to large landscapes, due to its inclusion of diverse predictors 
and coverage of their gradients, enhancing its flexibility and 
applicability. 

Despite the advancements in DL techniques across various fields, the 

Fig. 4. (continued). 
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MODL model as developed in this study is novel and has not been found 
through literature review. The new methodology introduced in this 
study will enable the exploration of intricate connections within tropical 
forest ecosystems, which encompass multiple predictors and responses 

Table 4 
The best Multi-Output Deep Learning (MODL) models of different combinations 
of predictive variables for simultaneously predicting tree AGB, BGB, and TB 
while ensuring additivity for dipterocarp forest (DF) and cross-validation 
statistics.  

ID Combinations of 
predictive variables for 
simultaneously predicting 
tree AGB, BGB and TB 

FI RMSE 
(kg 
tree-1) 

Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

1 6 predictive variables: DBH, CA, H, WD, BA, Altitude 
Predicting AGB:  0.947  40.4  3.00  23.14  19.72 
Predicting BGB:  0.892  10.5  11.51  26.95  21.28 
Predicting TB = AGB +
BGB:  

0.944  29.5  6.41  20.77  17.47  

2 5 predictive variables: DBH, CA, H, WD, BA 
Predicting AGB:  0.915  49.8  − 0.51  23.01  18.85 
Predicting BGB:  0.906  9.1  14.60  26.18  22.39 
Predicting TB = AGB +
BGB:  

0.915  35.8  3.68  19.93  16.19  

3 4 predictive variables: DBH, CA, H, WD 
Predicting AGB:  0.981  9.2  − 3.33  17.68  13.22 
Predicting BGB:  0.719  8.8  6.31  38.22  27.72 
Predicting TB = AGB +
BGB:  

0.965  9.0  2.05  13.85  10.95  

4 3 predictive variables: DBH, CA, H 
Predicting AGB:  0.945  21.7  − 2.29  26.01  21.40 
Predicting BGB:  0.871  6.1  13.96  29.16  21.98 
Predicting TB = AGB +
BGB:  

0.944  15.9  3.05  22.20  18.46  

5 3 predictive variables: DBH, H, WD 
Predicting AGB:  0.741  89.5  − 4.82  28.00  19.83 
Predicting BGB:  0.804  14.1  6.94  29.36  23.93 
Predicting TB = AGB +
BGB:  

0.755  64.1  0.73  21.34  14.06  

6 2 predictive variables: DBH, CA 
Predicting AGB:  0.950  15.8  0.21  24.75  20.03 
Predicting BGB:  0.732  8.4  10.86  34.16  25.46 
Predicting TB = AGB +
BGB:  

0.924  12.7  5.41  22.54  17.83  

7 2 predictive variables: DBH, H 
Predicting AGB:  0.934  12.5  6.21  25.03  19.49 
Predicting BGB:  0.643  8.4  9.22  45.34  33.94 
Predicting TB = AGB +
BGB:  

0.907  10.6  10.06  23.41  18.44  

8 1 predictive variable: DBH 
Predicting AGB:  0.954  13.9  − 0.16  23.79  20.22 
Predicting BGB:  0.827  6.5  2.74  41.64  27.99 
Predicting TB = AGB +
BGB:  

0.950  10.8  4.77  20.78  17.33 

Note: AGB (kg tree-1): Aboveground biomass, BGB (kg tree-1): Belowground 
biomass, TB (kg tree-1): Total tree biomass including tree above- and below-
ground biomass, DBH (cm): Diameter at breast height, CA (m2 tree-1): Tree 
crown area, H (m): Tree height, WD (g cm− 3): Wood density, BA (m2/ha): Stand 
basal area, Altitude (m), P (mm year− 1 averaged): Mean annual precipitation, 
Soil type: Igneous rocks and Sedimentary rocks. 
Cross-validation with 10 realizations, each repeating the dataset was split 
randomly into 70% for training and 30% for validation; and the best MODL 
models, chosen from the 10 validation results, had its statistics and error metrics 
averaged for that validation. Bold: The optimal MODL model. 

Table 5 
The best Multi-Output Deep Learning (MODL) models of different combinations 
of predictive variables for simultaneously predicting tree AGB, BGB, and TB 
while ensuring additivity for evergreen broadleaf forest (EBLF) and cross- 
validation statistics.  

ID Combinations of 
predictive variables for 
simultaneously predicting 
tree AGB, BGB and TB 

FI RMSE 
(kg 
tree-1) 

Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

1 7 predictive variables: DBH, CA, H, WD, BA, Altitude, P 
Predicting AGB:  0.891  7.4  0.91  16.69  12.68 
Predicting BGB:  0.741  2.8  2.18  46.07  27.91 
Predicting TB = AGB +
BGB:  

0.891  5.6  2.44  17.25  12.34  

2 6 predictive variables: DBH, CA, H, WD, BA, Altitude 
Predicting AGB:  0.934  7.2  − 1.72  19.94  15.84 
Predicting BGB:  0.805  3.0  6.22  28.26  20.99 
Predicting TB = AGB +
BGB:  

0.925  5.5  0.60  17.94  14.42  

3 5 predictive variables: DBH, CA, H, WD, BA 
Predicting AGB:  0.855  8.6  − 0.47  32.81  16.29 
Predicting BGB:  0.793  2.8  5.87  24.90  21.19 
Predicting TB = AGB +
BGB:  

0.896  6.4  2.54  23.40  13.66  

4 4 predictive variables: DBH, CA, H, WD 
Predicting AGB:  0.661  59.4  7.19  19.68  14.71 
Predicting BGB:  0.745  7.6  8.22  28.37  25.09 
Predicting TB = AGB +
BGB:  

0.737  42.4  8.77  19.06  14.38  

5 3 predictive variables: DBH, CA, H 
Predicting AGB:  0.826  11.3  5.25  17.43  13.87 
Predicting BGB:  0.472  5.0  16.41  35.66  30.94 
Predicting TB = AGB +
BGB:  

0.776  8.7  8.06  18.34  13.69  

6 3 predictive variables: DBH, H, WD 
Predicting AGB:  0.884  9.8  1.70  15.26  12.44 
Predicting BGB:  0.684  7.4  10.72  30.58  25.60 
Predicting TB = AGB +
BGB:  

0.947  8.7  4.76  14.15  10.56  

7 2 predictive variables: DBH, CA 
Predicting AGB:  0.555  68.0  9.39  25.90  20.32 
Predicting BGB:  0.905  3.0  6.03  39.39  26.84 
Predicting TB = AGB +
BGB:  

0.599  48.1  9.73  26.29  20.60  

8 2 predictive variables: DBH, H 
Predicting AGB:  0.821  44.1  6.37  22.50  17.28 
Predicting BGB:  0.899  3.6  8.76  31.60  26.59 
Predicting TB = AGB +
BGB:  

0.865  31.3  7.82  21.71  16.43  

9 1 predictive variable: DBH 
Predicting AGB:  0.829  11.0  9.25  23.67  18.05 
Predicting BGB:  0.676  3.8  7.16  27.09  21.78 
Predicting TB = AGB +
BGB:  

0.816  8.3  9.83  22.66  16.55 

Note: AGB (kg tree-1): Aboveground biomass, BGB (kg tree-1): Belowground 
biomass, TB (kg tree-1): Total tree biomass including tree above- and below-
ground biomass, DBH (cm): Diameter at breast height, CA (m2 tree-1): Tree 
crown area, H (m): Tree height, WD (g cm− 3): Wood density, BA (m2/ha): Stand 
basal area, Altitude (m), P (mm year− 1 averaged): Mean annual precipitation, 
Soil type: Igneous rocks and Sedimentary rocks. 
Cross-validation with 10 realizations, each repeating the dataset was split 
randomly into 70% for training and 30% for validation; and the best MODL 
models, chosen from the 10 validation results, had its statistics and error metrics 
averaged for that validation. Bold: The optimal MODL model. 
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Table 6 
The best Single-Output Deep Learning models with different combinations of 8 optimal variables and a minimum of 2 variables for separately predicting tree AGB, BGB, 
TB in two forest types, DF and EBLF, and cross-validation statistics.  

ID Combinations of predictive variables Separately predicted tree AGB, BGB, and TB FI RMSE 
(kg tree-1) 

Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

1 8 predictive variables: DBH, CA, H, WD, BA, Altitude, P, Forest type Predicting AGB:  0.929  39.8  3.29  20.14  15.08 
Predicting BGB:  0.853  10.0  2.95  27.35  22.07 
Predicting TB:  0.983  25.9  1.33  25.96  17.59 

2 2 predictive variables: DBH, Forest type Predicting AGB:  0.944  29.1  2.62  26.62  22.22 
Predicting BGB:  0.896  3.9  5.44  34.21  28.13 
Predicting TB:  0.970  28.6  7.40  24.38  17.92 

Note: AGB (kg tree-1): Aboveground biomass, BGB (kg tree-1): Belowground biomass, TB (kg tree-1): Total tree biomass including tree above- and belowground biomass, 
DBH (cm): Diameter at breast height, CA (m2 tree-1): Tree crown area, H (m): Tree height, WD (g cm− 3): Wood density, BA (m2/ha): Stand basal area, Altitude (m), P 
(mm year− 1 averaged): Mean annual precipitation, Forest type: Dipterocarp Forest (DF) and Evergreen Broadleaf Forest (EBLF), Soil type: Igneous rocks and Sedi-
mentary rocks.Cross-validation with 10 realizations, each repeating the dataset was split randomly into 70 % for training and 30 % for validation; and the best MODL 
models, chosen from the 10 validation results, had its statistics and error metrics averaged for that validation. 

Table 7 
Cross-validation statistics and error metrics comparing Multi-Output Deep Learning (MODL) and Weighted Nonlinear Seemingly Unrelated Regression (WNSUR) 
models for simultaneous predictions of tree AGB, BGB, and TB while ensuring additivity in each forest type of DF and EBLF, using the same sampled trees, and tree 
predictive covariates.  

ID Tree predictive 
covariates 

Forest types / sampled 
trees (n) 

Methods Modelling systems FI Bias 
(%) 

RMSPE 
(%) 

MAPE 
(%) 

Sources 

1 DBH, H, WD, CA DF 
n = 105 

WNSUR AGB = 0.79787 × (DBH2HWD)0.66765 ×

CA0.51024  
0.956 − 0.38  35.21  28.92 Kralicek et al., 

2017 
BGB = 56.47582 × (DBH2H)0.91319  0.885 − 15.24  69.81  49.94 
TB = AGB + BGB  0.949 0.15  27.49  22.54 

MODL The best model for predicting AGB  0.981 − 3.33  17.68  13.22 This study, 2023 
The best model for predicting BGB  0.719 6.31  38.22  27.72 
The best model for predicting TB = AGB +
BGB  

0.965 2.05  13.85  10.95 

2 DBH, H, WD EBLF 
n = 70 

WNSUR AGB = 0.14822 × (DBH2HWD)1.23945  0.889 27.68  42.99  37.09 Kralicek et al., 
2017 BGB = 0.16892 × DBH1.76536  0.769 − 111.14  158.26  122.14 

TB = AGB + BGB  0.909 9.97  25.58  19.92 
MODL The best model for predicting AGB  0.884 1.70  15.26  12.44 This study, 2023 

The best model for predicting BGB  0.684 10.72  30.58  25.60 
The best model for predicting TB = AGB +
BGB  

0.947 4.76  14.15  10.56 

Note: AGB (kg tree-1): Aboveground biomass, BGB (kg tree-1): Belowground biomass, TB (kg tree-1): Total tree biomass including tree above- and belowground biomass, 
DBH (cm): Diameter at breast height, CA (m2 tree-1): Tree crown area, H (m): Tree height, WD (g cm− 3): Wood density. Cross-validation for MODL with 10 realizations, 
each repeating the dataset, was split randomly into 70 % for training and 30 % for validation; the best MODL model was selected out of 10 validation results, and had its 
statistics and error metrics averaged for that validation. DBH2H (m3)= (DBH (cm)/100)2 

× H (m); DBH2HWD (kg) = DBH2H × WD (g cm− 3) × 1000. DF: Dipterocarp 
Forest, EBLF: Evergreen Broadleaf Forest. The WNSUR modeling systems exhibited all parameters as significant at a p-value < 0.0001. 

Fig. 5. Simultaneously fitted vs. observed tree AGB, BGB, and TB (tree above- and belowground biomass and the total tree biomass, respectively) with the same tree 
predictors of DBH, H, and WD (diameter at breast height, tree height, and wood density, respectively) for evergreen broadleaf forests in comparison between Multi- 
Output Deep Learning (MODL) and Weighted Nonlinear Seemingly Unrelated Regression (WNSUR) approaches. 
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intertwined in biological and ecological contexts. These relationships 
are challenging to capture with conventional regression models. 

4.5. Limitations of the MODL approach 

In addition to the advantages of MODL models over conventional 
regression WNSUR in simultaneous forest biomass prediction and 
ensuring additivity, they have limitations: 1) They require large datasets 
for accurate learning of multi-predictor-multi-output relationships; 2) 
MODL lacks a mechanism for selecting influential predictor variables, 
necessitating reliance on methods like PCA, FAMD for selection; and 3) 
Optimization of DNN architecture for each dataset entails exploring 
various factors, making training time-consuming. 

5. Conclusions 

The MODL modeling systems developed in this study significantly 
increased the reliability of simultaneous predictions of tree AGB, BGB, 
and TB in DF and EBLF compared to conventional WNSUR modeling 
systems, even when both utilized the same dataset and predictive 
covariates in the same forest types. Additionally, they ensured the 
additivity of the tree components and total biomass estimates, a feat 
impossible through single-output DL models used for separate pre-
dictions. The MODL models reduced the MAPE of tree AGB, BGB, and TB 
simultaneous predictions by up to 24.7 %, 96.5 %, and 9.4 %, respec-
tively, compared to WNSUR modeling systems. 

The MODL models with one to eight input predictors were developed 
and saved. The MODL model with the optimal eight predictive cova-
riates − DBH, CA, H, WD, BA, Altitude, P, and Forest type − proved the 
best for simultaneous tree AGB, BGB, and TB predictions in tropical DFs 
and EBLFs. The MODL algorithm can incorporate many complex factors, 
including numerical and categorical variables, into the models without 
needing pre-identifying optimal functions. This characteristic signifi-
cantly enhances the reliability of simultaneous predictions for tree AGB, 
BGB, and TB. It enables the MODL models to be applied across various 
scales, spanning from small to large areas, encompassing diverse gra-
dients of forest stand characteristics, climate conditions, soil properties, 
and topography. 
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